Emerging drugs for asthma

Research output: Contribution to journalLiterature review

20 Citations (Scopus)

Abstract

Background. Current therapies for asthma are aimed at controlling disease symptoms and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires life-time therapy while a subset of patients remains symptomatic despite optimal treatment creating a clear unmet medical need. Objectives: It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Results: Significant areas of drug development include humanised monoclonal antibodies (mAb) for asthma therapy including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma relevant mediators or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. Conclusions: This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy. Current therapies for asthma are aimed at controlling disease symptoms, and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires lifetime therapy; and a subset of patients remains symptomatic despite optimal treatment, creating a clear unmet medical need. It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Significant areas of drug development include humanised mAb for asthma therapy, including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma-relevant mediators, or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy.

Original languageEnglish
Pages (from-to)643-653
Number of pages11
JournalExpert Opinion on Emerging Drugs
Volume13
Issue number4
DOIs
Publication statusPublished - Dec 2008

Keywords

  • asthma
  • airway inflammation
  • corticosteroids
  • biopharmaceuticals
  • severe persistent asthma
  • CC-chemokine receptor-3
  • anti-ige antibody
  • allergic-asthma
  • molecular-mechanisms
  • monoclonal-antibody
  • in-vivo
  • airway
  • ciclesonide
  • antagonist

Cite this

Emerging drugs for asthma. / Walsh, Garry M.

In: Expert Opinion on Emerging Drugs, Vol. 13, No. 4, 12.2008, p. 643-653.

Research output: Contribution to journalLiterature review

@article{7b1cbb916c2547ada1fa20e3406a70ec,
title = "Emerging drugs for asthma",
abstract = "Background. Current therapies for asthma are aimed at controlling disease symptoms and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires life-time therapy while a subset of patients remains symptomatic despite optimal treatment creating a clear unmet medical need. Objectives: It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Results: Significant areas of drug development include humanised monoclonal antibodies (mAb) for asthma therapy including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma relevant mediators or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. Conclusions: This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy. Current therapies for asthma are aimed at controlling disease symptoms, and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires lifetime therapy; and a subset of patients remains symptomatic despite optimal treatment, creating a clear unmet medical need. It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Significant areas of drug development include humanised mAb for asthma therapy, including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma-relevant mediators, or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy.",
keywords = "asthma, airway inflammation, corticosteroids, biopharmaceuticals, severe persistent asthma, CC-chemokine receptor-3, anti-ige antibody, allergic-asthma, molecular-mechanisms, monoclonal-antibody, in-vivo, airway, ciclesonide, antagonist",
author = "Walsh, {Garry M}",
year = "2008",
month = "12",
doi = "10.1517/14728210802591378",
language = "English",
volume = "13",
pages = "643--653",
journal = "Expert Opinion on Emerging Drugs",
issn = "1472-8214",
publisher = "Informa Healthcare",
number = "4",

}

TY - JOUR

T1 - Emerging drugs for asthma

AU - Walsh, Garry M

PY - 2008/12

Y1 - 2008/12

N2 - Background. Current therapies for asthma are aimed at controlling disease symptoms and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires life-time therapy while a subset of patients remains symptomatic despite optimal treatment creating a clear unmet medical need. Objectives: It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Results: Significant areas of drug development include humanised monoclonal antibodies (mAb) for asthma therapy including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma relevant mediators or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. Conclusions: This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy. Current therapies for asthma are aimed at controlling disease symptoms, and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires lifetime therapy; and a subset of patients remains symptomatic despite optimal treatment, creating a clear unmet medical need. It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Significant areas of drug development include humanised mAb for asthma therapy, including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma-relevant mediators, or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy.

AB - Background. Current therapies for asthma are aimed at controlling disease symptoms and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires life-time therapy while a subset of patients remains symptomatic despite optimal treatment creating a clear unmet medical need. Objectives: It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Results: Significant areas of drug development include humanised monoclonal antibodies (mAb) for asthma therapy including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma relevant mediators or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. Conclusions: This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy. Current therapies for asthma are aimed at controlling disease symptoms, and for the majority of asthmatics inhaled corticosteroid anti-inflammatory therapy is effective. However, this approach requires lifetime therapy; and a subset of patients remains symptomatic despite optimal treatment, creating a clear unmet medical need. It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches may identify new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach may provide disease-modifying treatments. Significant areas of drug development include humanised mAb for asthma therapy, including those against IgE, IL-4 and IL-5. Asthma-relevant cytokines or chemokines have been targeted in a number of other ways. These include the use of humanised receptor blocking mAb or the removal of cytokines or chemokines via their binding to soluble receptor constructs. Small-molecule receptor antagonists also target receptors or the cellular signal transduction pathways that are activated following cytokine or chemokine receptor ligation. Another approach is to target asthma-relevant mediators, or the pathways controlling pro-inflammatory leukocyte accumulation within the asthmatic lung. This review will discuss the current status, therapeutic potential and potential problems of these novel drug developments in asthma therapy.

KW - asthma

KW - airway inflammation

KW - corticosteroids

KW - biopharmaceuticals

KW - severe persistent asthma

KW - CC-chemokine receptor-3

KW - anti-ige antibody

KW - allergic-asthma

KW - molecular-mechanisms

KW - monoclonal-antibody

KW - in-vivo

KW - airway

KW - ciclesonide

KW - antagonist

U2 - 10.1517/14728210802591378

DO - 10.1517/14728210802591378

M3 - Literature review

VL - 13

SP - 643

EP - 653

JO - Expert Opinion on Emerging Drugs

JF - Expert Opinion on Emerging Drugs

SN - 1472-8214

IS - 4

ER -