Estimating generating partitions of chaotic systems by unstable periodic orbits

Ruslan L. Davidchack, Ying-Cheng Lai, Erik M. Bollt, Mukeshwar Dhamala

Research output: Contribution to journalArticlepeer-review

71 Citations (Scopus)


An outstanding problem in chaotic dynamics is to specify generating partitions for symbolic dynamics in dimensions larger than 1. It has been known that the infinite number of unstable periodic orbits embedded in the chaotic invariant set provides sufficient information for estimating the generating partition. Here we present a general, dimension-independent, and efficient approach for this task based on optimizing a set of proximity functions defined with respect to periodic orbits. Our algorithm allows us to obtain the approximate location of the generating partition for the Ikeda-Hammel-Jones-Moloney map.

Original languageEnglish
Pages (from-to)1353-1356
Number of pages4
JournalPhysical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Issue number2
Publication statusPublished - 1 Feb 2000


  • symbolic dynamics
  • strange attractor
  • ring cavity
  • henon map


Dive into the research topics of 'Estimating generating partitions of chaotic systems by unstable periodic orbits'. Together they form a unique fingerprint.

Cite this