TY - JOUR
T1 - Exact detection of direct links in networks of interacting dynamical units
AU - Rubido Obrer, Nicolas
AU - Marti, Arturo C
AU - Bianco-Martinez, Ezequiel
AU - Grebogi, Celso
AU - Baptista, Murilo Da Silva
AU - Masoller, Cristina
N1 - Authors NR, EB-M, CG, and MSB acknowledge the Scottish Universities Physics Alliance (SUPA). EB-M and MSB also acknowledge the Engineering and Physical Science Research Council (EPSRC) project Ref. EP/I032 606/1. ACM and CM acknowledge the LINC project (FP7-PEOPLE-2011-ITN, grant no. 289447). ACM also aknowledges PEDECIBA and CSIC(Uruguay). CM also acknowledges grant FIS2012–37655-C02–01 from the Spanish MCI, grant 2009 SGR 1168, and the ICREA Academia programme from the Generalitat de Catalunya.
PY - 2014/9/5
Y1 - 2014/9/5
N2 - The inference of an underlying network topology from local observations of a complex system composed of interacting units is usually attempted by using statistical similarity measures, such as cross-correlation (CC) and mutual information (MI). The possible existence of a direct link between different units is, however, hindered within the time-series measurements. Here we show that, for the class of systems studied, when an abrupt change in the ordered set of CC or MI values exists, it is possible to infer, without errors, the underlying network topology from the time-series measurements, even in the presence of observational noise, non-identical units, and coupling heterogeneity. We find that a necessary condition for the discontinuity to occur is that the dynamics of the coupled units is partially coherent, i.e., neither complete disorder nor globally synchronous patterns are present. We critically compare the inference methods based on CC and MI, in terms of how effective, robust, and reliable they are, and conclude that, in general, MI outperforms CC in robustness and reliability. Our findings could be relevant for the construction and interpretation of functional networks, such as those constructed from brain or climate data.
AB - The inference of an underlying network topology from local observations of a complex system composed of interacting units is usually attempted by using statistical similarity measures, such as cross-correlation (CC) and mutual information (MI). The possible existence of a direct link between different units is, however, hindered within the time-series measurements. Here we show that, for the class of systems studied, when an abrupt change in the ordered set of CC or MI values exists, it is possible to infer, without errors, the underlying network topology from the time-series measurements, even in the presence of observational noise, non-identical units, and coupling heterogeneity. We find that a necessary condition for the discontinuity to occur is that the dynamics of the coupled units is partially coherent, i.e., neither complete disorder nor globally synchronous patterns are present. We critically compare the inference methods based on CC and MI, in terms of how effective, robust, and reliable they are, and conclude that, in general, MI outperforms CC in robustness and reliability. Our findings could be relevant for the construction and interpretation of functional networks, such as those constructed from brain or climate data.
U2 - 10.1088/1367-2630/16/9/093010
DO - 10.1088/1367-2630/16/9/093010
M3 - Article
VL - 16
JO - New Journal of Physics
JF - New Journal of Physics
SN - 1367-2630
M1 - 093010
ER -