Experiments and numerical simulations of single particle foreign object damage-like impacts of thermal barrier coatings

M. W. Crowell, T. A. Schaedler, B. H. Hazel, D. G. Konitzer, R. M. McMeeking, A. G. Evans

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

The thermalbarriercoatings (TBCs) used on the hot section components of many aero-turbines face a variety of compromising conditions while in service. One condition of particular concern on high-pressure turbine (HPT) blades is foreignobjectdamage (FOD) wherein hard foreignparticles, often found in the gas path of operating aero-turbines, are struck by the leading edge of the HPT blades. Even singleimpacts of this kind can cause complete spallation of the local TBC, removing thermal protection on one of the hottest component surfaces in the entire engine. We present here the first experimental FOD study we know of where the impacting particle size, geometry, and velocity, as well as TBC temperature, are well known at each impact site. We then quantitatively compare the experimental impact crater profiles with numericalsimulations of equivalent impact scenarios, finding excellent agreement and thereby validating the numerical modeling techniques and parameters. Finally, we present a numerical parameter study of particle and TBC material properties using the validated model.
Original languageEnglish
Pages (from-to)116-124
Number of pages9
JournalInternational Journal of Impact Engineering
Volume48
DOIs
Publication statusPublished - Oct 2012

Keywords

  • ceramics
  • finite element analysis
  • impact behavior
  • dynamic phenomena

Fingerprint

Dive into the research topics of 'Experiments and numerical simulations of single particle foreign object damage-like impacts of thermal barrier coatings'. Together they form a unique fingerprint.

Cite this