Fold and thrust systems in Mass Transport Deposits

G. I. Alsop, S Marco, T. Levi, R. Weinberger

Research output: Contribution to journalArticle

28 Citations (Scopus)
9 Downloads (Pure)

Abstract

Improvements in seismic reflection data from gravity-driven fold and thrust systems developed in offshore Mass Transport Deposits (MTDs) reveal a number of significant features relating to displacement along thrusts. However, the data are still limited by the resolution of the seismic method, and are unable to provide detail of local fold and thrust processes. Investigation of exceptional gravity-driven contractional structures forming part of MTDs in lacustrine deposits of the Dead Sea Basin, enables us to present the first detailed outcrop analysis of fold and thrust systems cutting unlithified ‘soft’ sediments. We employ a range of established geometric techniques to our case study, including dip isogons, fault-propagation fold charts and displacement-distance diagrams previously developed for investigation of thrusts and folds in lithified rocks. Fault-propagation folds in unlithified sediments display tighter interlimb angles compared to models developed for lithified sequences. Values of stretch, which compares the relative thickness of equivalent hangingwall and footwall sequences measured along the fault plane, may be as low as only 0.3, which is significantly less than the minimum 0.5 values reported from thrusts cutting lithified rocks, and reflects the extreme variation in stratigraphic thickness around thrust-related folds. We suggest that the simple shear component of deformation in unlithified sediments may modify the forelimb thickness and interlimb angles to a greater extent than in lithified rocks. The average spacing of thrust ramps and the thickness of the thrust sequence display an approximate 5:1 ratio across a range of scales in MTDs. In general, thicker hangingwall and footwall sequences occur with larger thrust displacements, although displacement patterns on thrusts cutting unlithified (yet cohesive) sediments are more variable than those in lithified rocks. Line-length restoration of thrust systems in MTDs reveals 42% shortening, which reduces to 35% in overlying beds. A 23% reduction in shortening by folding and thrusting along individual thrusts suggests that heterogeneous lateral compaction may increase by ~10% towards the sediment surface. Thrust systems cutting unlithified sediments display distinct steps in cumulative displacement-distance plots representing increased rates of slip along the floor thrust, while displacement-distance plots along individual thrusts also reveal ‘horizontal steps’ relating to lithological variation. Competent units cut by thrust ramps may display the greatest displacement, which then progressively reduces both upward and sometimes downward along the ramp. This relationship demonstrates that ramps do not necessarily propagate upwards from the underlying flat as in some traditional models, but rather initiate by offset of competent horizons in the hangingwall of the detachment. Critical taper angles in MTDs may be an order of magnitude less than in accretionary complexes or lithified rocks. Overall, thrusts cutting unlithified sediments in MTDs display more variable displacement, and more pronounced displacement gradients toward fault tips, compared to thrusts cutting lithified sequences.
Original languageEnglish
Pages (from-to)98-115
Number of pages17
JournalJournal of Structural Geology
Volume94
Early online date23 Nov 2016
DOIs
Publication statusPublished - Jan 2017

Fingerprint

mass transport
thrust
fold
sediment
fault propagation
rock
footwall
gravity
cohesive sediment
seismic method
fault plane

Keywords

  • Mass Transport Deposits
  • thrusts
  • folds
  • slumping
  • earthquakes
  • Dead Sea Basin

Cite this

Fold and thrust systems in Mass Transport Deposits. / Alsop, G. I.; Marco, S; Levi, T.; Weinberger, R.

In: Journal of Structural Geology, Vol. 94, 01.2017, p. 98-115.

Research output: Contribution to journalArticle

Alsop, G. I. ; Marco, S ; Levi, T. ; Weinberger, R. / Fold and thrust systems in Mass Transport Deposits. In: Journal of Structural Geology. 2017 ; Vol. 94. pp. 98-115.
@article{dff6e21b749c4c3abb4adaad790d962f,
title = "Fold and thrust systems in Mass Transport Deposits",
abstract = "Improvements in seismic reflection data from gravity-driven fold and thrust systems developed in offshore Mass Transport Deposits (MTDs) reveal a number of significant features relating to displacement along thrusts. However, the data are still limited by the resolution of the seismic method, and are unable to provide detail of local fold and thrust processes. Investigation of exceptional gravity-driven contractional structures forming part of MTDs in lacustrine deposits of the Dead Sea Basin, enables us to present the first detailed outcrop analysis of fold and thrust systems cutting unlithified ‘soft’ sediments. We employ a range of established geometric techniques to our case study, including dip isogons, fault-propagation fold charts and displacement-distance diagrams previously developed for investigation of thrusts and folds in lithified rocks. Fault-propagation folds in unlithified sediments display tighter interlimb angles compared to models developed for lithified sequences. Values of stretch, which compares the relative thickness of equivalent hangingwall and footwall sequences measured along the fault plane, may be as low as only 0.3, which is significantly less than the minimum 0.5 values reported from thrusts cutting lithified rocks, and reflects the extreme variation in stratigraphic thickness around thrust-related folds. We suggest that the simple shear component of deformation in unlithified sediments may modify the forelimb thickness and interlimb angles to a greater extent than in lithified rocks. The average spacing of thrust ramps and the thickness of the thrust sequence display an approximate 5:1 ratio across a range of scales in MTDs. In general, thicker hangingwall and footwall sequences occur with larger thrust displacements, although displacement patterns on thrusts cutting unlithified (yet cohesive) sediments are more variable than those in lithified rocks. Line-length restoration of thrust systems in MTDs reveals 42{\%} shortening, which reduces to 35{\%} in overlying beds. A 23{\%} reduction in shortening by folding and thrusting along individual thrusts suggests that heterogeneous lateral compaction may increase by ~10{\%} towards the sediment surface. Thrust systems cutting unlithified sediments display distinct steps in cumulative displacement-distance plots representing increased rates of slip along the floor thrust, while displacement-distance plots along individual thrusts also reveal ‘horizontal steps’ relating to lithological variation. Competent units cut by thrust ramps may display the greatest displacement, which then progressively reduces both upward and sometimes downward along the ramp. This relationship demonstrates that ramps do not necessarily propagate upwards from the underlying flat as in some traditional models, but rather initiate by offset of competent horizons in the hangingwall of the detachment. Critical taper angles in MTDs may be an order of magnitude less than in accretionary complexes or lithified rocks. Overall, thrusts cutting unlithified sediments in MTDs display more variable displacement, and more pronounced displacement gradients toward fault tips, compared to thrusts cutting lithified sequences.",
keywords = "Mass Transport Deposits, thrusts , folds, slumping, earthquakes, Dead Sea Basin",
author = "Alsop, {G. I.} and S Marco and T. Levi and R. Weinberger",
note = "GIA acknowledges funding from the Carnegie Trust to undertake fieldwork for this project. SM acknowledges the Israel Science Foundation (ISF grant No. 1436/14) and the Ministry of National Infrastructures, Energy and Water Resources (grant #214-17-027). RW was supported by the Israel Science Foundation (ISF grant No. 1245/11). We would like to thank Hemin Koyi and Scott Wilkins for careful and constructive reviews, together with the editor Bill Dunne, for efficient handling of the manuscript.",
year = "2017",
month = "1",
doi = "10.1016/j.jsg.2016.11.008",
language = "English",
volume = "94",
pages = "98--115",
journal = "Journal of Structural Geology",
issn = "0191-8141",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Fold and thrust systems in Mass Transport Deposits

AU - Alsop, G. I.

AU - Marco, S

AU - Levi, T.

AU - Weinberger, R.

N1 - GIA acknowledges funding from the Carnegie Trust to undertake fieldwork for this project. SM acknowledges the Israel Science Foundation (ISF grant No. 1436/14) and the Ministry of National Infrastructures, Energy and Water Resources (grant #214-17-027). RW was supported by the Israel Science Foundation (ISF grant No. 1245/11). We would like to thank Hemin Koyi and Scott Wilkins for careful and constructive reviews, together with the editor Bill Dunne, for efficient handling of the manuscript.

PY - 2017/1

Y1 - 2017/1

N2 - Improvements in seismic reflection data from gravity-driven fold and thrust systems developed in offshore Mass Transport Deposits (MTDs) reveal a number of significant features relating to displacement along thrusts. However, the data are still limited by the resolution of the seismic method, and are unable to provide detail of local fold and thrust processes. Investigation of exceptional gravity-driven contractional structures forming part of MTDs in lacustrine deposits of the Dead Sea Basin, enables us to present the first detailed outcrop analysis of fold and thrust systems cutting unlithified ‘soft’ sediments. We employ a range of established geometric techniques to our case study, including dip isogons, fault-propagation fold charts and displacement-distance diagrams previously developed for investigation of thrusts and folds in lithified rocks. Fault-propagation folds in unlithified sediments display tighter interlimb angles compared to models developed for lithified sequences. Values of stretch, which compares the relative thickness of equivalent hangingwall and footwall sequences measured along the fault plane, may be as low as only 0.3, which is significantly less than the minimum 0.5 values reported from thrusts cutting lithified rocks, and reflects the extreme variation in stratigraphic thickness around thrust-related folds. We suggest that the simple shear component of deformation in unlithified sediments may modify the forelimb thickness and interlimb angles to a greater extent than in lithified rocks. The average spacing of thrust ramps and the thickness of the thrust sequence display an approximate 5:1 ratio across a range of scales in MTDs. In general, thicker hangingwall and footwall sequences occur with larger thrust displacements, although displacement patterns on thrusts cutting unlithified (yet cohesive) sediments are more variable than those in lithified rocks. Line-length restoration of thrust systems in MTDs reveals 42% shortening, which reduces to 35% in overlying beds. A 23% reduction in shortening by folding and thrusting along individual thrusts suggests that heterogeneous lateral compaction may increase by ~10% towards the sediment surface. Thrust systems cutting unlithified sediments display distinct steps in cumulative displacement-distance plots representing increased rates of slip along the floor thrust, while displacement-distance plots along individual thrusts also reveal ‘horizontal steps’ relating to lithological variation. Competent units cut by thrust ramps may display the greatest displacement, which then progressively reduces both upward and sometimes downward along the ramp. This relationship demonstrates that ramps do not necessarily propagate upwards from the underlying flat as in some traditional models, but rather initiate by offset of competent horizons in the hangingwall of the detachment. Critical taper angles in MTDs may be an order of magnitude less than in accretionary complexes or lithified rocks. Overall, thrusts cutting unlithified sediments in MTDs display more variable displacement, and more pronounced displacement gradients toward fault tips, compared to thrusts cutting lithified sequences.

AB - Improvements in seismic reflection data from gravity-driven fold and thrust systems developed in offshore Mass Transport Deposits (MTDs) reveal a number of significant features relating to displacement along thrusts. However, the data are still limited by the resolution of the seismic method, and are unable to provide detail of local fold and thrust processes. Investigation of exceptional gravity-driven contractional structures forming part of MTDs in lacustrine deposits of the Dead Sea Basin, enables us to present the first detailed outcrop analysis of fold and thrust systems cutting unlithified ‘soft’ sediments. We employ a range of established geometric techniques to our case study, including dip isogons, fault-propagation fold charts and displacement-distance diagrams previously developed for investigation of thrusts and folds in lithified rocks. Fault-propagation folds in unlithified sediments display tighter interlimb angles compared to models developed for lithified sequences. Values of stretch, which compares the relative thickness of equivalent hangingwall and footwall sequences measured along the fault plane, may be as low as only 0.3, which is significantly less than the minimum 0.5 values reported from thrusts cutting lithified rocks, and reflects the extreme variation in stratigraphic thickness around thrust-related folds. We suggest that the simple shear component of deformation in unlithified sediments may modify the forelimb thickness and interlimb angles to a greater extent than in lithified rocks. The average spacing of thrust ramps and the thickness of the thrust sequence display an approximate 5:1 ratio across a range of scales in MTDs. In general, thicker hangingwall and footwall sequences occur with larger thrust displacements, although displacement patterns on thrusts cutting unlithified (yet cohesive) sediments are more variable than those in lithified rocks. Line-length restoration of thrust systems in MTDs reveals 42% shortening, which reduces to 35% in overlying beds. A 23% reduction in shortening by folding and thrusting along individual thrusts suggests that heterogeneous lateral compaction may increase by ~10% towards the sediment surface. Thrust systems cutting unlithified sediments display distinct steps in cumulative displacement-distance plots representing increased rates of slip along the floor thrust, while displacement-distance plots along individual thrusts also reveal ‘horizontal steps’ relating to lithological variation. Competent units cut by thrust ramps may display the greatest displacement, which then progressively reduces both upward and sometimes downward along the ramp. This relationship demonstrates that ramps do not necessarily propagate upwards from the underlying flat as in some traditional models, but rather initiate by offset of competent horizons in the hangingwall of the detachment. Critical taper angles in MTDs may be an order of magnitude less than in accretionary complexes or lithified rocks. Overall, thrusts cutting unlithified sediments in MTDs display more variable displacement, and more pronounced displacement gradients toward fault tips, compared to thrusts cutting lithified sequences.

KW - Mass Transport Deposits

KW - thrusts

KW - folds

KW - slumping

KW - earthquakes

KW - Dead Sea Basin

U2 - 10.1016/j.jsg.2016.11.008

DO - 10.1016/j.jsg.2016.11.008

M3 - Article

VL - 94

SP - 98

EP - 115

JO - Journal of Structural Geology

JF - Journal of Structural Geology

SN - 0191-8141

ER -