Folding during soft-sediment deformation

G. I. Alsop, R. Weinberger, S. Marco, T. Levi

Research output: Contribution to journalArticle

3 Downloads (Pure)

Abstract

The detailed analysis of folding in rocks was in part pioneered by John Ramsay, and resulted in a range of techniques and criteria to define folds. Although folding of unlithified or ‘soft’ sediments is typically assumed to produce similar geometries to those in ‘hard rocks’, there has to date been little detailed analysis of such folds. The aim of this paper is therefore to investigate folds developed during soft-sediment deformation (SSD) by applying techniques established for the analysis of tectonic folds during hard-rock deformation (HRD). We use the Late Pleistocene Lisan Formation exposed around the Dead Sea as our case study, as the laminated lake sediments record intricacies of fold detail generated during seismically triggered slumping of mass transport deposits (MTDs) towards the depocentre of the basin. While it is frequently assumed that folds created during SSD are chaotic and form disharmonic structures, we provide analyses that show harmonic fold trains may form during slumping, although larger upright folds cannot be traced for significant distances and are more typically disharmonic. Our analysis also reveals a range of fold styles, with more competent detrital-rich layers displaying buckles (Class 1B), as well as upright Class 1A folds marked by thickened limbs. Class 1A buckle folds are generally considered to be created by flattening that overprints folds with an original Class 1B geometry. As thickened fold limbs are truncated by overlying erosive surfaces, the vertical flattening is considered to have occurred during the slump event. Different fold shapes may partially reflect variable flattening, depending on the original orientation of upright or recumbent folds, together with continued downslope-directed simple-shear deformation that modifies the fold geometry. Analysis of fold wavelength, amplitude and bed thickness allows us to plot strain contour maps, and indicates that beds defining slump folds display viscosity contrasts in the range of 50–250, which are similar to values estimated from folds created during HRD in metamorphic rocks. A range of refold patterns, similar to those established by John Ramsay in metamorphic rocks, are observed within slumps, and are truncated by the overlying sediments, indicating that they formed during a single progressive slump event rather than distinct ‘episodes’ of superimposed deformation. This study confirms that techniques developed for the analysis of folds created during HRD are equally applicable to those formed during SSD, and that resulting folds are generally indistinguishable from one another. Extreme caution should therefore be exercised when interpreting the origin of folds in the rock record where the palaeogeographical and tectonic contexts become increasingly uncertain, thereby leading to potential misidentification of folds created during SSD.
Original languageEnglish
JournalGeological Society Special Publications
Volume487
Early online date4 Feb 2019
DOIs
Publication statusE-pub ahead of print - 4 Feb 2019

Fingerprint

folding
Sediments
fold
Rocks
sediment
Metamorphic rocks
Tectonics
Geometry
hard rock
Shear deformation
Lakes
slumping
Mass transfer
Deposits
Viscosity
geometry
metamorphic rock
Wavelength
limb
tectonics

Keywords

  • folding
  • slumps
  • mass transport deposit
  • Dead Sea

Cite this

Folding during soft-sediment deformation. / Alsop, G. I.; Weinberger, R.; Marco, S.; Levi, T.

In: Geological Society Special Publications , Vol. 487, 04.02.2019.

Research output: Contribution to journalArticle

Alsop, G. I. ; Weinberger, R. ; Marco, S. ; Levi, T. / Folding during soft-sediment deformation. In: Geological Society Special Publications . 2019 ; Vol. 487.
@article{197dc416d602417f88e4f41ef4ae5b13,
title = "Folding during soft-sediment deformation",
abstract = "The detailed analysis of folding in rocks was in part pioneered by John Ramsay, and resulted in a range of techniques and criteria to define folds. Although folding of unlithified or ‘soft’ sediments is typically assumed to produce similar geometries to those in ‘hard rocks’, there has to date been little detailed analysis of such folds. The aim of this paper is therefore to investigate folds developed during soft-sediment deformation (SSD) by applying techniques established for the analysis of tectonic folds during hard-rock deformation (HRD). We use the Late Pleistocene Lisan Formation exposed around the Dead Sea as our case study, as the laminated lake sediments record intricacies of fold detail generated during seismically triggered slumping of mass transport deposits (MTDs) towards the depocentre of the basin. While it is frequently assumed that folds created during SSD are chaotic and form disharmonic structures, we provide analyses that show harmonic fold trains may form during slumping, although larger upright folds cannot be traced for significant distances and are more typically disharmonic. Our analysis also reveals a range of fold styles, with more competent detrital-rich layers displaying buckles (Class 1B), as well as upright Class 1A folds marked by thickened limbs. Class 1A buckle folds are generally considered to be created by flattening that overprints folds with an original Class 1B geometry. As thickened fold limbs are truncated by overlying erosive surfaces, the vertical flattening is considered to have occurred during the slump event. Different fold shapes may partially reflect variable flattening, depending on the original orientation of upright or recumbent folds, together with continued downslope-directed simple-shear deformation that modifies the fold geometry. Analysis of fold wavelength, amplitude and bed thickness allows us to plot strain contour maps, and indicates that beds defining slump folds display viscosity contrasts in the range of 50–250, which are similar to values estimated from folds created during HRD in metamorphic rocks. A range of refold patterns, similar to those established by John Ramsay in metamorphic rocks, are observed within slumps, and are truncated by the overlying sediments, indicating that they formed during a single progressive slump event rather than distinct ‘episodes’ of superimposed deformation. This study confirms that techniques developed for the analysis of folds created during HRD are equally applicable to those formed during SSD, and that resulting folds are generally indistinguishable from one another. Extreme caution should therefore be exercised when interpreting the origin of folds in the rock record where the palaeogeographical and tectonic contexts become increasingly uncertain, thereby leading to potential misidentification of folds created during SSD.",
keywords = "folding, slumps, mass transport deposit, Dead Sea",
author = "Alsop, {G. I.} and R. Weinberger and S. Marco and T. Levi",
note = "RW was supported by the Israel Science Foundation (ISF grant No. 868/17). SM acknowledges the Israel Science Foundation (ISF grant No. 1436/14) and the Ministry of National Infrastructures, Energy and Water Resources (grant #214-17-027). TL acknowledges the Israeli government GSI DS project 40706. We thank Stefan Schmalholz and Tim Dooley for careful and constructive reviews, together with Hermann Lebit for efficient editorial handling. Finally, GIA would like to take this opportunity to acknowledge John Ramsay’s support while a post-doc at ETH Zurich in the 1980’s.",
year = "2019",
month = "2",
day = "4",
doi = "10.1144/SP487.1",
language = "English",
volume = "487",
journal = "Geological Society Special Publications",
issn = "0305-8719",
publisher = "Geological Society of London",

}

TY - JOUR

T1 - Folding during soft-sediment deformation

AU - Alsop, G. I.

AU - Weinberger, R.

AU - Marco, S.

AU - Levi, T.

N1 - RW was supported by the Israel Science Foundation (ISF grant No. 868/17). SM acknowledges the Israel Science Foundation (ISF grant No. 1436/14) and the Ministry of National Infrastructures, Energy and Water Resources (grant #214-17-027). TL acknowledges the Israeli government GSI DS project 40706. We thank Stefan Schmalholz and Tim Dooley for careful and constructive reviews, together with Hermann Lebit for efficient editorial handling. Finally, GIA would like to take this opportunity to acknowledge John Ramsay’s support while a post-doc at ETH Zurich in the 1980’s.

PY - 2019/2/4

Y1 - 2019/2/4

N2 - The detailed analysis of folding in rocks was in part pioneered by John Ramsay, and resulted in a range of techniques and criteria to define folds. Although folding of unlithified or ‘soft’ sediments is typically assumed to produce similar geometries to those in ‘hard rocks’, there has to date been little detailed analysis of such folds. The aim of this paper is therefore to investigate folds developed during soft-sediment deformation (SSD) by applying techniques established for the analysis of tectonic folds during hard-rock deformation (HRD). We use the Late Pleistocene Lisan Formation exposed around the Dead Sea as our case study, as the laminated lake sediments record intricacies of fold detail generated during seismically triggered slumping of mass transport deposits (MTDs) towards the depocentre of the basin. While it is frequently assumed that folds created during SSD are chaotic and form disharmonic structures, we provide analyses that show harmonic fold trains may form during slumping, although larger upright folds cannot be traced for significant distances and are more typically disharmonic. Our analysis also reveals a range of fold styles, with more competent detrital-rich layers displaying buckles (Class 1B), as well as upright Class 1A folds marked by thickened limbs. Class 1A buckle folds are generally considered to be created by flattening that overprints folds with an original Class 1B geometry. As thickened fold limbs are truncated by overlying erosive surfaces, the vertical flattening is considered to have occurred during the slump event. Different fold shapes may partially reflect variable flattening, depending on the original orientation of upright or recumbent folds, together with continued downslope-directed simple-shear deformation that modifies the fold geometry. Analysis of fold wavelength, amplitude and bed thickness allows us to plot strain contour maps, and indicates that beds defining slump folds display viscosity contrasts in the range of 50–250, which are similar to values estimated from folds created during HRD in metamorphic rocks. A range of refold patterns, similar to those established by John Ramsay in metamorphic rocks, are observed within slumps, and are truncated by the overlying sediments, indicating that they formed during a single progressive slump event rather than distinct ‘episodes’ of superimposed deformation. This study confirms that techniques developed for the analysis of folds created during HRD are equally applicable to those formed during SSD, and that resulting folds are generally indistinguishable from one another. Extreme caution should therefore be exercised when interpreting the origin of folds in the rock record where the palaeogeographical and tectonic contexts become increasingly uncertain, thereby leading to potential misidentification of folds created during SSD.

AB - The detailed analysis of folding in rocks was in part pioneered by John Ramsay, and resulted in a range of techniques and criteria to define folds. Although folding of unlithified or ‘soft’ sediments is typically assumed to produce similar geometries to those in ‘hard rocks’, there has to date been little detailed analysis of such folds. The aim of this paper is therefore to investigate folds developed during soft-sediment deformation (SSD) by applying techniques established for the analysis of tectonic folds during hard-rock deformation (HRD). We use the Late Pleistocene Lisan Formation exposed around the Dead Sea as our case study, as the laminated lake sediments record intricacies of fold detail generated during seismically triggered slumping of mass transport deposits (MTDs) towards the depocentre of the basin. While it is frequently assumed that folds created during SSD are chaotic and form disharmonic structures, we provide analyses that show harmonic fold trains may form during slumping, although larger upright folds cannot be traced for significant distances and are more typically disharmonic. Our analysis also reveals a range of fold styles, with more competent detrital-rich layers displaying buckles (Class 1B), as well as upright Class 1A folds marked by thickened limbs. Class 1A buckle folds are generally considered to be created by flattening that overprints folds with an original Class 1B geometry. As thickened fold limbs are truncated by overlying erosive surfaces, the vertical flattening is considered to have occurred during the slump event. Different fold shapes may partially reflect variable flattening, depending on the original orientation of upright or recumbent folds, together with continued downslope-directed simple-shear deformation that modifies the fold geometry. Analysis of fold wavelength, amplitude and bed thickness allows us to plot strain contour maps, and indicates that beds defining slump folds display viscosity contrasts in the range of 50–250, which are similar to values estimated from folds created during HRD in metamorphic rocks. A range of refold patterns, similar to those established by John Ramsay in metamorphic rocks, are observed within slumps, and are truncated by the overlying sediments, indicating that they formed during a single progressive slump event rather than distinct ‘episodes’ of superimposed deformation. This study confirms that techniques developed for the analysis of folds created during HRD are equally applicable to those formed during SSD, and that resulting folds are generally indistinguishable from one another. Extreme caution should therefore be exercised when interpreting the origin of folds in the rock record where the palaeogeographical and tectonic contexts become increasingly uncertain, thereby leading to potential misidentification of folds created during SSD.

KW - folding

KW - slumps

KW - mass transport deposit

KW - Dead Sea

UR - http://www.mendeley.com/research/folding-during-softsediment-deformation

U2 - 10.1144/SP487.1

DO - 10.1144/SP487.1

M3 - Article

VL - 487

JO - Geological Society Special Publications

JF - Geological Society Special Publications

SN - 0305-8719

ER -