Fusion category algebras

Markus Linckelmann

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

The fusion system F on a defect group P of a block b of a finite group G over a suitable p-adic ring O does not in general determine the number l(b) of isomorphism classes of simple modules of the block. We show that conjecturally the missing information should be encoded in a single second cohomology class alpha of the constant functor with value k(x) on the orbit category (F) over bar (c) of F-centric subgroups Q of P of b which "glues together" the second cohomology classes alpha(Q) of Aut((F) over bar)(Q) with values in k(x) in Kulshammer-Puig [Invent. Math. 102 (1990) 17-71]. We show that if a exists, there is a canonical quasi-hereditary k-algebra (F) over bar (b) such that Alperin's weight conjecture becomes equivalent to the equality 1(b) = 1((F) over bar (b)). By work of C. Broto, R. Levi, B. Oliver [J. Amer. Math. Soc. 16 (2003) 779-856], the existence of a classifying space of the block b is equivalent to the existence of a certain extension category L of F-c by the center functor Z. If both invariants alpha C exist, we show that there is an O-algebra C(b) associated with b having (F) over bar (b) as quotient such that Alperin's weight conjecture becomes again equivalent to the equality l(b) = l(L(b)); furthermore, if b has an abelian defect group, C(b) is isomorphic to a source algebra of the Brauer correspondent of b. (C) 2004 Elsevier Inc. All rights reserved.

Original languageEnglish
Pages (from-to)222-235
Number of pages13
JournalJournal of Algebra
Volume277
Issue number1
DOIs
Publication statusPublished - Jul 2004

Keywords

  • FINITE-GROUPS
  • BLOCK THEORY
  • CONJECTURE
  • SYSTEMS
  • ALPERIN

Cite this

Fusion category algebras. / Linckelmann, Markus.

In: Journal of Algebra, Vol. 277, No. 1, 07.2004, p. 222-235.

Research output: Contribution to journalArticle

Linckelmann, Markus. / Fusion category algebras. In: Journal of Algebra. 2004 ; Vol. 277, No. 1. pp. 222-235.
@article{83934a8ece6b42a591a59b3e2d0354f8,
title = "Fusion category algebras",
abstract = "The fusion system F on a defect group P of a block b of a finite group G over a suitable p-adic ring O does not in general determine the number l(b) of isomorphism classes of simple modules of the block. We show that conjecturally the missing information should be encoded in a single second cohomology class alpha of the constant functor with value k(x) on the orbit category (F) over bar (c) of F-centric subgroups Q of P of b which {"}glues together{"} the second cohomology classes alpha(Q) of Aut((F) over bar)(Q) with values in k(x) in Kulshammer-Puig [Invent. Math. 102 (1990) 17-71]. We show that if a exists, there is a canonical quasi-hereditary k-algebra (F) over bar (b) such that Alperin's weight conjecture becomes equivalent to the equality 1(b) = 1((F) over bar (b)). By work of C. Broto, R. Levi, B. Oliver [J. Amer. Math. Soc. 16 (2003) 779-856], the existence of a classifying space of the block b is equivalent to the existence of a certain extension category L of F-c by the center functor Z. If both invariants alpha C exist, we show that there is an O-algebra C(b) associated with b having (F) over bar (b) as quotient such that Alperin's weight conjecture becomes again equivalent to the equality l(b) = l(L(b)); furthermore, if b has an abelian defect group, C(b) is isomorphic to a source algebra of the Brauer correspondent of b. (C) 2004 Elsevier Inc. All rights reserved.",
keywords = "FINITE-GROUPS, BLOCK THEORY, CONJECTURE, SYSTEMS, ALPERIN",
author = "Markus Linckelmann",
year = "2004",
month = "7",
doi = "10.1016/j.jalgebra.2003.12.010",
language = "English",
volume = "277",
pages = "222--235",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Fusion category algebras

AU - Linckelmann, Markus

PY - 2004/7

Y1 - 2004/7

N2 - The fusion system F on a defect group P of a block b of a finite group G over a suitable p-adic ring O does not in general determine the number l(b) of isomorphism classes of simple modules of the block. We show that conjecturally the missing information should be encoded in a single second cohomology class alpha of the constant functor with value k(x) on the orbit category (F) over bar (c) of F-centric subgroups Q of P of b which "glues together" the second cohomology classes alpha(Q) of Aut((F) over bar)(Q) with values in k(x) in Kulshammer-Puig [Invent. Math. 102 (1990) 17-71]. We show that if a exists, there is a canonical quasi-hereditary k-algebra (F) over bar (b) such that Alperin's weight conjecture becomes equivalent to the equality 1(b) = 1((F) over bar (b)). By work of C. Broto, R. Levi, B. Oliver [J. Amer. Math. Soc. 16 (2003) 779-856], the existence of a classifying space of the block b is equivalent to the existence of a certain extension category L of F-c by the center functor Z. If both invariants alpha C exist, we show that there is an O-algebra C(b) associated with b having (F) over bar (b) as quotient such that Alperin's weight conjecture becomes again equivalent to the equality l(b) = l(L(b)); furthermore, if b has an abelian defect group, C(b) is isomorphic to a source algebra of the Brauer correspondent of b. (C) 2004 Elsevier Inc. All rights reserved.

AB - The fusion system F on a defect group P of a block b of a finite group G over a suitable p-adic ring O does not in general determine the number l(b) of isomorphism classes of simple modules of the block. We show that conjecturally the missing information should be encoded in a single second cohomology class alpha of the constant functor with value k(x) on the orbit category (F) over bar (c) of F-centric subgroups Q of P of b which "glues together" the second cohomology classes alpha(Q) of Aut((F) over bar)(Q) with values in k(x) in Kulshammer-Puig [Invent. Math. 102 (1990) 17-71]. We show that if a exists, there is a canonical quasi-hereditary k-algebra (F) over bar (b) such that Alperin's weight conjecture becomes equivalent to the equality 1(b) = 1((F) over bar (b)). By work of C. Broto, R. Levi, B. Oliver [J. Amer. Math. Soc. 16 (2003) 779-856], the existence of a classifying space of the block b is equivalent to the existence of a certain extension category L of F-c by the center functor Z. If both invariants alpha C exist, we show that there is an O-algebra C(b) associated with b having (F) over bar (b) as quotient such that Alperin's weight conjecture becomes again equivalent to the equality l(b) = l(L(b)); furthermore, if b has an abelian defect group, C(b) is isomorphic to a source algebra of the Brauer correspondent of b. (C) 2004 Elsevier Inc. All rights reserved.

KW - FINITE-GROUPS

KW - BLOCK THEORY

KW - CONJECTURE

KW - SYSTEMS

KW - ALPERIN

U2 - 10.1016/j.jalgebra.2003.12.010

DO - 10.1016/j.jalgebra.2003.12.010

M3 - Article

VL - 277

SP - 222

EP - 235

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

IS - 1

ER -