Fusion systems with Benson-Solomon components

Ellen Henke, Justin Lynd

Research output: Working paper

29 Downloads (Pure)

Abstract

The Benson-Solomon systems comprise the one currently known family of simple exotic fusion systems at the prime $2$. We show that if $\mathcal{F}$ is a fusion system on a $2$-group having a Benson-Solomon subsystem $\mathcal{C}$ which is subintrinsic and maximal in the collection of components of involution centralizers, then $\mathcal{C}$ is a component of $\mathcal{F}$, and in particular, $\mathcal{F}$ is not simple. This is one part of the proof of a Walter's Theorem for fusion systems, which is itself a major step in a program for the classification of a wide class of simple fusion systems of component type at the prime $2$.
Original languageEnglish
Publication statusSubmitted - 5 Jun 2018

Publication series

NamearXiv

Keywords

  • math.GR
  • 20D20, 20D05

Fingerprint Dive into the research topics of 'Fusion systems with Benson-Solomon components'. Together they form a unique fingerprint.

  • Cite this