Abstract
In this study, we present a method for measuring functional magnetic resonance imaging (fMRI) signal complexity using fuzzy approximate entropy (fApEn) and compare it with the established sample entropy (SampEn). Here we use resting state fMRI dataset of 86 healthy adults (41 males) with age ranging from 19 to 85 years. We expect the complexity of the resting state fMRI signals measured to be consistent with the Goldberger/Lipsitz model for robustness where healthier (younger) and more robust systems exhibit more complexity in their physiological output and system complexity decrease with age. The mean whole brain fApEn demonstrated significant negative correlation (r = −0.472, p<0.001) with age. In comparison, SampEn produced a non-significant negative correlation (r = −0.099, p = 0.367). fApEn also demonstrated a significant (p < 0.05) negative correlation with age regionally (frontal, parietal, limbic, temporal and cerebellum parietal lobes). There was no significant correlation regionally between the SampEn maps and age. These results support the Goldberger/Lipsitz model for robustness and have shown that fApEn is potentially a sensitive new method for the complexity analysis of fMRI data.
Original language | English |
---|---|
Pages (from-to) | 1082-1090 |
Number of pages | 9 |
Journal | Medical Engineering & Physics |
Volume | 37 |
Issue number | 11 |
Early online date | 21 Oct 2015 |
DOIs | |
Publication status | Published - Nov 2015 |
Keywords
- ageing
- blood oxygen level dependent (BOLD)
- complexity
- fuzzy approximate entropy (fApEn)
- resting state-functional magnetic resonance imaging (rs-fMRI)
- sample entropy (SampEn)