Abstract
Objective Perfusion-metabolism mismatch pattern on positron emission tomography (PET) predicts hibernating myocardium. We assess the ECG-gated metabolic PET as a surrogate for the perfusion-metabolism mismatch pattern on PET imaging.
Methods 13 N-Ammonia (NH 3) and 18 F-fluorodeoxyglucose (FDG) are respectively perfusion and metabolism PET tracers. We used ECG gating to acquire FDG-PET to collect wall thickening (mechanical) data. These allow detection of metabolic activity in regions with reduced contraction (metabolism-mechanical mismatch pattern). We had two data sets on each patient: Perfusion-metabolism and metabolism-mechanical data sets. We tested the hypothesis that metabolism-mechanical pattern on PET could predict perfusion-metabolism mismatch pattern.
Results We studied 55 patients (48 males), mean age 62 years. All were in sinus rhythm, and had impaired left ventricular contraction. Perfusion-metabolism mismatch pattern was found in 26 patients. Metabolism-mechanical mismatch pattern was found in 25 patients. The results were concordant in 52 patients (95%). As a surrogate for perfusion-metabolism mismatch pattern, demonstration of metabolism-mechanical mismatch pattern is highly sensitive (92%) and specific (97%). In this cohort, the positive and negative predictive accuracy of the new method are 96% and 93%, respectively.
Conclusion Metabolism-mechanical mismatch pattern could predict perfusion-metabolism mismatch pattern in patients with myocardial viability criteria on PET. Prospective validation against the gold standard of improved myocardial contraction after revascularisation is needed.
Original language | English |
---|---|
Article number | e000581 |
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Open Heart |
Volume | 4 |
Issue number | 2 |
DOIs | |
Publication status | Published - 28 Jul 2017 |