TY - JOUR
T1 - Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand
AU - Boulton, Carolyn
AU - Menzies, Catriona D
AU - Toy, Virginia G.
AU - Townend, John
AU - Sutherland, Rupert
PY - 2017/1
Y1 - 2017/1
N2 - Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet‐oligoclase facies mylonitic fault rocks from ∼35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault‐related rocks retrieved during Deep Fault Drilling Project (DFDP‐1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core‐alteration zone extends ∼20–30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle‐to‐plastic transition (T ≤ 300–400°C, 6–10 km depth) and at shallow depths (T = 20–150°C, 0–3 km depth). Within the fault core‐alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.
AB - Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet‐oligoclase facies mylonitic fault rocks from ∼35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault‐related rocks retrieved during Deep Fault Drilling Project (DFDP‐1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core‐alteration zone extends ∼20–30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle‐to‐plastic transition (T ≤ 300–400°C, 6–10 km depth) and at shallow depths (T = 20–150°C, 0–3 km depth). Within the fault core‐alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.
U2 - 10.1002/2016GC006588
DO - 10.1002/2016GC006588
M3 - Article
VL - 18
SP - 238
EP - 265
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
SN - 1525-2027
IS - 1
ER -