Geometrics perspective on Nichols Algebras

Ehud Meir* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We formulate the generation of finite dimensional pointed Hopf algebras by group-like elements and skew-primitives in geometric terms. This is done through a more general study of connected and coconnected Hopf algebras inside a braided fusion category C. We describe such Hopf algebras as orbits for the action of a reductive group on an affine variety. We then show that the closed orbits are precisely the orbits of Nichols algebras, and that all other algebras are therefore deformations of Nichols algebras. For the case where the category C is the category G GYD of Yetter-Drinfeld modules over a finite group G, this reduces the question of generation by group-like elements and skew-primitives to a geometric question about rigidity of orbits. Comparing the results
of Angiono Kochetov and Mastnak, this gives a new proof for the generation of finite dimensional pointed Hopf algebras with abelian groups of group-like elements by skewprimitives and group-like elements. We show that if V is a simple object in C and B(V ) is finite dimensional, then B(V ) must be rigid. We also show that a non-rigid Nichols algebra can always be deformed to a pre-Nichols algebra or a post-Nichols algebra which is isomorphic to the Nichols algebra as an object of the category C.
Original languageEnglish
Pages (from-to)390-422
Number of pages33
JournalJournal of Algebra
Volume601
Early online date31 Mar 2022
DOIs
Publication statusPublished - 1 Jul 2022

Keywords

  • Nichols algebras
  • Hopf algebras
  • Geometric invariant theory
  • Braided monoidal categories
  • Quantum groups

Fingerprint

Dive into the research topics of 'Geometrics perspective on Nichols Algebras'. Together they form a unique fingerprint.

Cite this