Groundwater dynamics at the hillslope – riparian interface in a year with extreme winter rainfall

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Water movement in hillslopes is determined by the subsurface characteristics that control flow paths connecting precipitation to stream flow generation. The hydrological response of hillslopes is notoriously non-linear and non-stationary; with the relative importance of vertical and lateral flow paths also depending on event characteristics and antecedent conditions. In northern boreal regions, climate change projections indicate that wetter and warmer winter conditions are likely to generate more extreme flood events. Here, we report a study from an upland catchment in northern Scotland where a monitoring year provided an opportunity to contextualise observations during the hillslope response to a winter rainfall event that locally caused the most extreme flooding for over 200 years. Monitoring the hillslope water table, soil moisture and isotopes in precipitation, groundwater and stream flow provided invaluable insight into hillslope – riparian coupling. Groundwater with a shallow water table (<0.05 m deep) in poorly drained valley bottom drift deposits maintained almost fully saturated and stream-connected peat soil profiles in riparian areas. In the wettest periods, the groundwater beneath the peat was artesian. On steeper hillslopes, soils were drier and the water table was generally deeper (0.5 to 1 m below ground level), though the profile could fully saturate and groundwater levels reach the surface during the wettest period. Groundwater in deeper wells typically showed an anti-clockwise hysteresis compared to stream flow, and peak levels typically lagged behind the stream by a few hours in the valley bottom and >1 day in the upper hillslope. In contrast, shallower wells in the soil profiles in the riparian area showed more a responsive perched groundwater system with transmissivity feedback in the upper soil layers resulting in much more rapid responses which generally peaked before the stream and exhibited clockwise hysteresis. Analysis of stable isotopes in precipitation, groundwater and streamflow, indicated that groundwater was remarkably well mixed with limited fractionation effects, inferring precipitation on the upper, unconfined hillslopes was the dominant source of recharge - particularly during the winter. The study shows that groundwater plays two roles in generating stream flow: a constant baseflow supply to the stream and time varying-exfiltration into the edge of the riparian zone, which contributes to surface runoff during storm events.
Original languageEnglish
Pages (from-to)509-528
Number of pages20
JournalJournal of Hydrology
Volume564
Early online date3 Jul 2018
DOIs
Publication statusPublished - Sep 2018

Fingerprint

hillslope
rainfall
groundwater
winter
streamflow
water table
antecedent conditions
hydrological response
flow control
riparian zone
transmissivity
monitoring
baseflow
hysteresis
groundwater flow
soil profile
recharge
stable isotope
shallow water
flooding

Keywords

  • groundwater
  • runoff
  • isotopes
  • hysteresis

Cite this

Groundwater dynamics at the hillslope – riparian interface in a year with extreme winter rainfall. / Scheliga, B.; Tetzlaff, D.; Nuetzmann, G.; Soulsby, C.

In: Journal of Hydrology, Vol. 564, 09.2018, p. 509-528.

Research output: Contribution to journalArticle

@article{8dbb0119d2734208986388870f715770,
title = "Groundwater dynamics at the hillslope – riparian interface in a year with extreme winter rainfall",
abstract = "Water movement in hillslopes is determined by the subsurface characteristics that control flow paths connecting precipitation to stream flow generation. The hydrological response of hillslopes is notoriously non-linear and non-stationary; with the relative importance of vertical and lateral flow paths also depending on event characteristics and antecedent conditions. In northern boreal regions, climate change projections indicate that wetter and warmer winter conditions are likely to generate more extreme flood events. Here, we report a study from an upland catchment in northern Scotland where a monitoring year provided an opportunity to contextualise observations during the hillslope response to a winter rainfall event that locally caused the most extreme flooding for over 200 years. Monitoring the hillslope water table, soil moisture and isotopes in precipitation, groundwater and stream flow provided invaluable insight into hillslope – riparian coupling. Groundwater with a shallow water table (<0.05 m deep) in poorly drained valley bottom drift deposits maintained almost fully saturated and stream-connected peat soil profiles in riparian areas. In the wettest periods, the groundwater beneath the peat was artesian. On steeper hillslopes, soils were drier and the water table was generally deeper (0.5 to 1 m below ground level), though the profile could fully saturate and groundwater levels reach the surface during the wettest period. Groundwater in deeper wells typically showed an anti-clockwise hysteresis compared to stream flow, and peak levels typically lagged behind the stream by a few hours in the valley bottom and >1 day in the upper hillslope. In contrast, shallower wells in the soil profiles in the riparian area showed more a responsive perched groundwater system with transmissivity feedback in the upper soil layers resulting in much more rapid responses which generally peaked before the stream and exhibited clockwise hysteresis. Analysis of stable isotopes in precipitation, groundwater and streamflow, indicated that groundwater was remarkably well mixed with limited fractionation effects, inferring precipitation on the upper, unconfined hillslopes was the dominant source of recharge - particularly during the winter. The study shows that groundwater plays two roles in generating stream flow: a constant baseflow supply to the stream and time varying-exfiltration into the edge of the riparian zone, which contributes to surface runoff during storm events.",
keywords = "groundwater, runoff, isotopes, hysteresis",
author = "B. Scheliga and D. Tetzlaff and G. Nuetzmann and C. Soulsby",
note = "We would like to thank the European Research Council (ERC, project GA 335910 VeWa) for funding. We also thank Chris Gabrielli for his help with some of the initial deeper boreholes.",
year = "2018",
month = "9",
doi = "10.1016/j.jhydrol.2018.06.082",
language = "English",
volume = "564",
pages = "509--528",
journal = "Journal of Hydrology",
issn = "0022-1694",
publisher = "Elsevier Science B. V.",

}

TY - JOUR

T1 - Groundwater dynamics at the hillslope – riparian interface in a year with extreme winter rainfall

AU - Scheliga, B.

AU - Tetzlaff, D.

AU - Nuetzmann, G.

AU - Soulsby, C.

N1 - We would like to thank the European Research Council (ERC, project GA 335910 VeWa) for funding. We also thank Chris Gabrielli for his help with some of the initial deeper boreholes.

PY - 2018/9

Y1 - 2018/9

N2 - Water movement in hillslopes is determined by the subsurface characteristics that control flow paths connecting precipitation to stream flow generation. The hydrological response of hillslopes is notoriously non-linear and non-stationary; with the relative importance of vertical and lateral flow paths also depending on event characteristics and antecedent conditions. In northern boreal regions, climate change projections indicate that wetter and warmer winter conditions are likely to generate more extreme flood events. Here, we report a study from an upland catchment in northern Scotland where a monitoring year provided an opportunity to contextualise observations during the hillslope response to a winter rainfall event that locally caused the most extreme flooding for over 200 years. Monitoring the hillslope water table, soil moisture and isotopes in precipitation, groundwater and stream flow provided invaluable insight into hillslope – riparian coupling. Groundwater with a shallow water table (<0.05 m deep) in poorly drained valley bottom drift deposits maintained almost fully saturated and stream-connected peat soil profiles in riparian areas. In the wettest periods, the groundwater beneath the peat was artesian. On steeper hillslopes, soils were drier and the water table was generally deeper (0.5 to 1 m below ground level), though the profile could fully saturate and groundwater levels reach the surface during the wettest period. Groundwater in deeper wells typically showed an anti-clockwise hysteresis compared to stream flow, and peak levels typically lagged behind the stream by a few hours in the valley bottom and >1 day in the upper hillslope. In contrast, shallower wells in the soil profiles in the riparian area showed more a responsive perched groundwater system with transmissivity feedback in the upper soil layers resulting in much more rapid responses which generally peaked before the stream and exhibited clockwise hysteresis. Analysis of stable isotopes in precipitation, groundwater and streamflow, indicated that groundwater was remarkably well mixed with limited fractionation effects, inferring precipitation on the upper, unconfined hillslopes was the dominant source of recharge - particularly during the winter. The study shows that groundwater plays two roles in generating stream flow: a constant baseflow supply to the stream and time varying-exfiltration into the edge of the riparian zone, which contributes to surface runoff during storm events.

AB - Water movement in hillslopes is determined by the subsurface characteristics that control flow paths connecting precipitation to stream flow generation. The hydrological response of hillslopes is notoriously non-linear and non-stationary; with the relative importance of vertical and lateral flow paths also depending on event characteristics and antecedent conditions. In northern boreal regions, climate change projections indicate that wetter and warmer winter conditions are likely to generate more extreme flood events. Here, we report a study from an upland catchment in northern Scotland where a monitoring year provided an opportunity to contextualise observations during the hillslope response to a winter rainfall event that locally caused the most extreme flooding for over 200 years. Monitoring the hillslope water table, soil moisture and isotopes in precipitation, groundwater and stream flow provided invaluable insight into hillslope – riparian coupling. Groundwater with a shallow water table (<0.05 m deep) in poorly drained valley bottom drift deposits maintained almost fully saturated and stream-connected peat soil profiles in riparian areas. In the wettest periods, the groundwater beneath the peat was artesian. On steeper hillslopes, soils were drier and the water table was generally deeper (0.5 to 1 m below ground level), though the profile could fully saturate and groundwater levels reach the surface during the wettest period. Groundwater in deeper wells typically showed an anti-clockwise hysteresis compared to stream flow, and peak levels typically lagged behind the stream by a few hours in the valley bottom and >1 day in the upper hillslope. In contrast, shallower wells in the soil profiles in the riparian area showed more a responsive perched groundwater system with transmissivity feedback in the upper soil layers resulting in much more rapid responses which generally peaked before the stream and exhibited clockwise hysteresis. Analysis of stable isotopes in precipitation, groundwater and streamflow, indicated that groundwater was remarkably well mixed with limited fractionation effects, inferring precipitation on the upper, unconfined hillslopes was the dominant source of recharge - particularly during the winter. The study shows that groundwater plays two roles in generating stream flow: a constant baseflow supply to the stream and time varying-exfiltration into the edge of the riparian zone, which contributes to surface runoff during storm events.

KW - groundwater

KW - runoff

KW - isotopes

KW - hysteresis

U2 - 10.1016/j.jhydrol.2018.06.082

DO - 10.1016/j.jhydrol.2018.06.082

M3 - Article

VL - 564

SP - 509

EP - 528

JO - Journal of Hydrology

JF - Journal of Hydrology

SN - 0022-1694

ER -