Habitability: A Review

C. S. Cockell, T. Bush, C. Bryce, S. Direito, M. Fox-Powell, J. P. Harrison, H. Lammer, H. Landenmark, J. Martin-Torres, N. Nicholson, L. Noack, J. O'Malley-James, S. J. Payler, A. Rushby, T. Samuels, P. Schwendner, J. Wadsworth, M. P. Zorzano

Research output: Contribution to journalArticle

99 Citations (Scopus)

Abstract

Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of “habitability” and a “habitable environment.” An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies
Original languageEnglish
Pages (from-to)89-117
Number of pages29
JournalAstrobiology
Volume16
Issue number1
Early online date20 Jan 2016
DOIs
Publication statusPublished - Jan 2016

Fingerprint Dive into the research topics of 'Habitability: A Review'. Together they form a unique fingerprint.

  • Profiles

    No photo of Maria-Paz Zorzano Mier

    Maria-Paz Zorzano Mier

    Person: Academic

    Cite this

    Cockell, C. S., Bush, T., Bryce, C., Direito, S., Fox-Powell, M., Harrison, J. P., Lammer, H., Landenmark, H., Martin-Torres, J., Nicholson, N., Noack, L., O'Malley-James, J., Payler, S. J., Rushby, A., Samuels, T., Schwendner, P., Wadsworth, J., & Zorzano, M. P. (2016). Habitability: A Review. Astrobiology, 16(1), 89-117. https://doi.org/10.1089/ast.2015.1295