Abstract
Growing evidence suggests that hepatic-insulin resistance is sufficient to promote progression to cardiovascular disease. We have shown previously that liver-specific protein-tyrosine-phosphatase 1B (PTP1B) deficiency improves hepatic-insulin sensitivity and whole-body glucose homeostasis. The aim of this study was to investigate the impact of liver-specific PTP1B-deficiency (L-PTP1B-/-) on cardiac and peripheral vascular function, with special emphasis on endothelial function in the context of high-fat diet (HFD)-induced obesity.
L-PTP1B-/- mice exhibited an improved glucose and lipid homeostasis and increased insulin sensitivity, without changes in body weight. HFD-feeding increased systolic blood pressure (BP) in both L-PTP1B-/- and control littermates; however, this was significantly lower in L-PTP1B-/- mice. HFD-feeding increased diastolic BP in control mice only, whilst the L-PTP1B-/- mice were completely protected. The analysis of the function of the left ventricle (LV) revealed that HFD-feeding decreased LV fractional shortening in control animals, which was not observed in L-PTP1B−/− mice. Importantly, HFD feeding significantly impaired endothelium-dependent vasorelaxation in response to acetylcholine in aortas from control mice, whilst L-PTP1B−/− mice were fully protected. This was associated with alterations in eNOS phosphorylation. Selective inhibition of COX-2, using NS-398, decreased the contractile response in response to serotonin (5-HT) only in vessels from control mice. HFD-fed control mice released enhanced levels of prostaglandin E, a vasoconstrictor metabolite; whilst both chow- and HFD-fed L-PTP1B−/− mice released higher levels of prostacylin, a vasorelaxant metabolite.
Our data indicate that hepatic-PTP1B inhibition protects against HFD-induced endothelial dysfunction, underscoring the potential of peripheral PTP1B inhibitors in reduction of obesity-associated cardiovascular risk in addition to its anti-diabetic effects.
L-PTP1B-/- mice exhibited an improved glucose and lipid homeostasis and increased insulin sensitivity, without changes in body weight. HFD-feeding increased systolic blood pressure (BP) in both L-PTP1B-/- and control littermates; however, this was significantly lower in L-PTP1B-/- mice. HFD-feeding increased diastolic BP in control mice only, whilst the L-PTP1B-/- mice were completely protected. The analysis of the function of the left ventricle (LV) revealed that HFD-feeding decreased LV fractional shortening in control animals, which was not observed in L-PTP1B−/− mice. Importantly, HFD feeding significantly impaired endothelium-dependent vasorelaxation in response to acetylcholine in aortas from control mice, whilst L-PTP1B−/− mice were fully protected. This was associated with alterations in eNOS phosphorylation. Selective inhibition of COX-2, using NS-398, decreased the contractile response in response to serotonin (5-HT) only in vessels from control mice. HFD-fed control mice released enhanced levels of prostaglandin E, a vasoconstrictor metabolite; whilst both chow- and HFD-fed L-PTP1B−/− mice released higher levels of prostacylin, a vasorelaxant metabolite.
Our data indicate that hepatic-PTP1B inhibition protects against HFD-induced endothelial dysfunction, underscoring the potential of peripheral PTP1B inhibitors in reduction of obesity-associated cardiovascular risk in addition to its anti-diabetic effects.
Original language | English |
---|---|
Pages (from-to) | 607-617 |
Number of pages | 11 |
Journal | Biochemical Pharmacology |
Volume | 92 |
Issue number | 4 |
Early online date | 30 Oct 2014 |
DOIs | |
Publication status | Published - 15 Dec 2014 |
Keywords
- PTP1B
- insulin resistance
- endothelial dysfunction
- tyrosine phosphatase
- eNOS
Fingerprint
Dive into the research topics of 'Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction'. Together they form a unique fingerprint.Profiles
-
Mirela Delibegovic
- School of Medicine, Medical Sciences & Nutrition, Medical Sciences - Professor in Diabetes Physiology and Signalling
- Institute of Medical Sciences
Person: Academic