### Abstract

For an odd prime p, we show that the p-primary homotopy exponent of Harper's rank 2 finite mod-p H-space K-p is p(p2+p). We then rise this to show that the 3-primary homotopy exponent of each of the exceptional Lie groups F-4 and E-6 is 3(12).

Original language | English |
---|---|

Pages (from-to) | 33-42 |

Number of pages | 9 |

Journal | Journal of Mathematics of Kyoto University |

Volume | 44 |

Issue number | 1 |

Publication status | Published - 2004 |

### Keywords

- COMPACT

### Cite this

*Journal of Mathematics of Kyoto University*,

*44*(1), 33-42.

**Homotopy exponents of Harper's spaces.** / Theriault, Stephen D.

Research output: Contribution to journal › Article

*Journal of Mathematics of Kyoto University*, vol. 44, no. 1, pp. 33-42.

}

TY - JOUR

T1 - Homotopy exponents of Harper's spaces

AU - Theriault, Stephen D

PY - 2004

Y1 - 2004

N2 - For an odd prime p, we show that the p-primary homotopy exponent of Harper's rank 2 finite mod-p H-space K-p is p(p2+p). We then rise this to show that the 3-primary homotopy exponent of each of the exceptional Lie groups F-4 and E-6 is 3(12).

AB - For an odd prime p, we show that the p-primary homotopy exponent of Harper's rank 2 finite mod-p H-space K-p is p(p2+p). We then rise this to show that the 3-primary homotopy exponent of each of the exceptional Lie groups F-4 and E-6 is 3(12).

KW - COMPACT

M3 - Article

VL - 44

SP - 33

EP - 42

JO - Journal of Mathematics of Kyoto University

JF - Journal of Mathematics of Kyoto University

SN - 0023-608X

IS - 1

ER -