Homotopy exponents of mod 2(r) Moore spaces

Stephen D Theriault

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We prove that 2(r+1).pi(*)(P-m(2(r))) = 0 provided m >= 4 and r >= 6. This is the best possible result. As well, for 2 <= r <= 5 we obtain upper bounds on the homotopy exponent of P-m(2(r)). (C) 2007 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)369-398
Number of pages30
JournalTopology
Volume47
Issue number6
Early online date1 Oct 2007
DOIs
Publication statusPublished - Nov 2008

Fingerprint

Moore Space
Pi
Homotopy
Exponent
Upper bound

Keywords

  • Homotopy exponent
  • Moore space
  • Whitehead product
  • James–Hopf invariant

Cite this

Homotopy exponents of mod 2(r) Moore spaces. / Theriault, Stephen D.

In: Topology, Vol. 47, No. 6, 11.2008, p. 369-398.

Research output: Contribution to journalArticle

Theriault, Stephen D. / Homotopy exponents of mod 2(r) Moore spaces. In: Topology. 2008 ; Vol. 47, No. 6. pp. 369-398.
@article{1fcb0f8da1f443b9af58859d825dce44,
title = "Homotopy exponents of mod 2(r) Moore spaces",
abstract = "We prove that 2(r+1).pi(*)(P-m(2(r))) = 0 provided m >= 4 and r >= 6. This is the best possible result. As well, for 2 <= r <= 5 we obtain upper bounds on the homotopy exponent of P-m(2(r)). (C) 2007 Elsevier Ltd. All rights reserved.",
keywords = "Homotopy exponent, Moore space, Whitehead product, James–Hopf invariant",
author = "Theriault, {Stephen D}",
note = "Open Archive",
year = "2008",
month = "11",
doi = "10.1016/j.top.2007.09.002",
language = "English",
volume = "47",
pages = "369--398",
journal = "Topology",
issn = "0040-9383",
publisher = "Elsevier Limited",
number = "6",

}

TY - JOUR

T1 - Homotopy exponents of mod 2(r) Moore spaces

AU - Theriault, Stephen D

N1 - Open Archive

PY - 2008/11

Y1 - 2008/11

N2 - We prove that 2(r+1).pi(*)(P-m(2(r))) = 0 provided m >= 4 and r >= 6. This is the best possible result. As well, for 2 <= r <= 5 we obtain upper bounds on the homotopy exponent of P-m(2(r)). (C) 2007 Elsevier Ltd. All rights reserved.

AB - We prove that 2(r+1).pi(*)(P-m(2(r))) = 0 provided m >= 4 and r >= 6. This is the best possible result. As well, for 2 <= r <= 5 we obtain upper bounds on the homotopy exponent of P-m(2(r)). (C) 2007 Elsevier Ltd. All rights reserved.

KW - Homotopy exponent

KW - Moore space

KW - Whitehead product

KW - James–Hopf invariant

U2 - 10.1016/j.top.2007.09.002

DO - 10.1016/j.top.2007.09.002

M3 - Article

VL - 47

SP - 369

EP - 398

JO - Topology

JF - Topology

SN - 0040-9383

IS - 6

ER -