TY - JOUR
T1 - Hypoxia sensitivity of a voltage-gated potassium current in porcine intrapulmonary vein smooth muscle cells
AU - Dospinescu, C.
AU - Widmer, H.
AU - Rowe, I.
AU - Wainwright, C.
AU - Cruickshank, S.F.
N1 - Acknowledgements:
Present address for Dr.Ciprian Dospinescu: Department of Cardiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, Scotland.
Grants:
This work was supported by the Overseas Research Students Awards Scheme, The Ratiu Foundation UK, Robert Gordon University Research Development Initiative, and Tenovus Scotland (Grant no. GO4.9).
Disclosures:
No conflicts of interest, financial or otherwise are declared by the author(s).
PY - 2012/9/1
Y1 - 2012/9/1
N2 - Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K+ current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca2+ and was sensitive to Ca2+ channel blockade. Blockade of K+ channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of −36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K+ current (IKH) that was hypoxia, TEA, and 4-AP sensitive. IKH was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was −32 mV, suggesting that IKH may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv1.5, Kv2.1, and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of IKH would contribute to hypoxic-induced contraction in PVSMC.
AB - Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K+ current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca2+ and was sensitive to Ca2+ channel blockade. Blockade of K+ channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of −36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K+ current (IKH) that was hypoxia, TEA, and 4-AP sensitive. IKH was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was −32 mV, suggesting that IKH may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv1.5, Kv2.1, and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of IKH would contribute to hypoxic-induced contraction in PVSMC.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84865707480&partnerID=MN8TOARS
U2 - 10.1152/ajplung.00157.2012
DO - 10.1152/ajplung.00157.2012
M3 - Article
VL - 303
SP - 10
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
ER -