Identification and characterization of TLR7, TLR8a2, TLR8b1 and TLR8b2 genes in Atlantic salmon (Salmo salar).

Po-Tsang Lee, Jun Zou, Jason W. Holland, Samuel A. M. Martin, Theo Kanellos, Christopher J. Secombes

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Mammalian Toll-like receptor (TLR) 7 and 8 are responsible for recognizing viral single-stranded RNA (ssRNA) and are activated by anti-viral imidazoquinoline compounds, leading to a series of defensive mechanisms being launched to protect the host against viruses. In this study, we identified two TLR7 (with one probably a pseudogene) and three TLR8 genes, namely TLR8a2, TLR8b1 and TLR8b2 from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs. Bioinformatics analysis showed that salmon TLR7 and TLR8a2 are closely related to the corresponding trout orthologs, however, salmon TLR8b1 and TLR8b2 share the highest amino acid sequence similarity to zebrafish TLR8b and formed a subfamily of the piscine TLR8 molecules in phylogenetic tree analysis. A conserved gene synteny was found with the salmon TLR7/8a members as seen in other vertebrate loci. Deduced domain organisation of salmon TLR7 and TLR8 molecules showed similar structural features, with equal numbers of leucine-rich repeats (LRRs) and insertion motifs. Individual TLR molecules were expressed in a similar pattern between parr and post-smolts, with a high expression level in immune tissues. Promoter analysis predicted several transcription factor binding sites in the TLR8a1/2 and TLR8b1 5′ flanking regions, namely C/EBP, AP-1, STAT, NFκB, and IRF family, suggesting cytokine regulation of the genes. Hence, three recombinant cytokines, type I IFN, IFNγ and IL-1β were used to study the regulation of the salmon TLR gene expression levels in primary head kidney cells and the Salmon Head Kidney-1 (SHK-1) cell line. Salmon TLR7 and TLR8a1 gene expression was more sensitive to type I IFN and IFNγ treatment in primary head kidney cells and SHK-1 cells respectively, with no significant up-regulation of TLR8a2 and TLR8b2 by any of the treatments. On the other hand, salmon TLR8a1 and TLR8b1 were most sensitive to IL-1β treatment in SHK-1 cells and primary head kidney cells, respectively. TLR8b2 was undetectable in SHK-1 cells under these same conditions.
Original languageEnglish
Pages (from-to)295-305
Number of pages11
JournalDevelopmental and Comparative Immunology
Volume41
Issue number2
Early online date4 Jun 2013
DOIs
Publication statusPublished - Oct 2013

Fingerprint

Salmo salar
Salmon
Head Kidney
Genes
Toll-Like Receptors
Interleukin-1
Toll-Like Receptor 8
Toll-Like Receptor 7
Cytokines
Synteny
Gene Expression
Pseudogenes
Trout
5' Flanking Region
Transcription Factor AP-1
Firearms
Zebrafish
Computational Biology
Leucine
Vertebrates

Keywords

  • Toll-like receptor
  • TLR7
  • TLR8
  • Atlantic salmon
  • Innate immunity
  • Gene expression

Cite this

@article{d51c07b83dd34d1495495e029a847360,
title = "Identification and characterization of TLR7, TLR8a2, TLR8b1 and TLR8b2 genes in Atlantic salmon (Salmo salar).",
abstract = "Mammalian Toll-like receptor (TLR) 7 and 8 are responsible for recognizing viral single-stranded RNA (ssRNA) and are activated by anti-viral imidazoquinoline compounds, leading to a series of defensive mechanisms being launched to protect the host against viruses. In this study, we identified two TLR7 (with one probably a pseudogene) and three TLR8 genes, namely TLR8a2, TLR8b1 and TLR8b2 from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs. Bioinformatics analysis showed that salmon TLR7 and TLR8a2 are closely related to the corresponding trout orthologs, however, salmon TLR8b1 and TLR8b2 share the highest amino acid sequence similarity to zebrafish TLR8b and formed a subfamily of the piscine TLR8 molecules in phylogenetic tree analysis. A conserved gene synteny was found with the salmon TLR7/8a members as seen in other vertebrate loci. Deduced domain organisation of salmon TLR7 and TLR8 molecules showed similar structural features, with equal numbers of leucine-rich repeats (LRRs) and insertion motifs. Individual TLR molecules were expressed in a similar pattern between parr and post-smolts, with a high expression level in immune tissues. Promoter analysis predicted several transcription factor binding sites in the TLR8a1/2 and TLR8b1 5′ flanking regions, namely C/EBP, AP-1, STAT, NFκB, and IRF family, suggesting cytokine regulation of the genes. Hence, three recombinant cytokines, type I IFN, IFNγ and IL-1β were used to study the regulation of the salmon TLR gene expression levels in primary head kidney cells and the Salmon Head Kidney-1 (SHK-1) cell line. Salmon TLR7 and TLR8a1 gene expression was more sensitive to type I IFN and IFNγ treatment in primary head kidney cells and SHK-1 cells respectively, with no significant up-regulation of TLR8a2 and TLR8b2 by any of the treatments. On the other hand, salmon TLR8a1 and TLR8b1 were most sensitive to IL-1β treatment in SHK-1 cells and primary head kidney cells, respectively. TLR8b2 was undetectable in SHK-1 cells under these same conditions.",
keywords = "Toll-like receptor, TLR7, TLR8, Atlantic salmon, Innate immunity, Gene expression",
author = "Po-Tsang Lee and Jun Zou and Holland, {Jason W.} and Martin, {Samuel A. M.} and Theo Kanellos and Secombes, {Christopher J.}",
note = "Acknowledgements L.P.-T. was supported by a PhD. studentship from the Ministry of Education, Republic of China (Taiwan). This work was also funded by the European Community’s seventh framework programme (FP7/2007-2013) under grant agreement no. 222719 (LIFECYCLE).",
year = "2013",
month = "10",
doi = "10.1016/j.dci.2013.05.013",
language = "English",
volume = "41",
pages = "295--305",
journal = "Developmental and Comparative Immunology",
issn = "0145-305X",
publisher = "Elsevier Limited",
number = "2",

}

TY - JOUR

T1 - Identification and characterization of TLR7, TLR8a2, TLR8b1 and TLR8b2 genes in Atlantic salmon (Salmo salar).

AU - Lee, Po-Tsang

AU - Zou, Jun

AU - Holland, Jason W.

AU - Martin, Samuel A. M.

AU - Kanellos, Theo

AU - Secombes, Christopher J.

N1 - Acknowledgements L.P.-T. was supported by a PhD. studentship from the Ministry of Education, Republic of China (Taiwan). This work was also funded by the European Community’s seventh framework programme (FP7/2007-2013) under grant agreement no. 222719 (LIFECYCLE).

PY - 2013/10

Y1 - 2013/10

N2 - Mammalian Toll-like receptor (TLR) 7 and 8 are responsible for recognizing viral single-stranded RNA (ssRNA) and are activated by anti-viral imidazoquinoline compounds, leading to a series of defensive mechanisms being launched to protect the host against viruses. In this study, we identified two TLR7 (with one probably a pseudogene) and three TLR8 genes, namely TLR8a2, TLR8b1 and TLR8b2 from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs. Bioinformatics analysis showed that salmon TLR7 and TLR8a2 are closely related to the corresponding trout orthologs, however, salmon TLR8b1 and TLR8b2 share the highest amino acid sequence similarity to zebrafish TLR8b and formed a subfamily of the piscine TLR8 molecules in phylogenetic tree analysis. A conserved gene synteny was found with the salmon TLR7/8a members as seen in other vertebrate loci. Deduced domain organisation of salmon TLR7 and TLR8 molecules showed similar structural features, with equal numbers of leucine-rich repeats (LRRs) and insertion motifs. Individual TLR molecules were expressed in a similar pattern between parr and post-smolts, with a high expression level in immune tissues. Promoter analysis predicted several transcription factor binding sites in the TLR8a1/2 and TLR8b1 5′ flanking regions, namely C/EBP, AP-1, STAT, NFκB, and IRF family, suggesting cytokine regulation of the genes. Hence, three recombinant cytokines, type I IFN, IFNγ and IL-1β were used to study the regulation of the salmon TLR gene expression levels in primary head kidney cells and the Salmon Head Kidney-1 (SHK-1) cell line. Salmon TLR7 and TLR8a1 gene expression was more sensitive to type I IFN and IFNγ treatment in primary head kidney cells and SHK-1 cells respectively, with no significant up-regulation of TLR8a2 and TLR8b2 by any of the treatments. On the other hand, salmon TLR8a1 and TLR8b1 were most sensitive to IL-1β treatment in SHK-1 cells and primary head kidney cells, respectively. TLR8b2 was undetectable in SHK-1 cells under these same conditions.

AB - Mammalian Toll-like receptor (TLR) 7 and 8 are responsible for recognizing viral single-stranded RNA (ssRNA) and are activated by anti-viral imidazoquinoline compounds, leading to a series of defensive mechanisms being launched to protect the host against viruses. In this study, we identified two TLR7 (with one probably a pseudogene) and three TLR8 genes, namely TLR8a2, TLR8b1 and TLR8b2 from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs. Bioinformatics analysis showed that salmon TLR7 and TLR8a2 are closely related to the corresponding trout orthologs, however, salmon TLR8b1 and TLR8b2 share the highest amino acid sequence similarity to zebrafish TLR8b and formed a subfamily of the piscine TLR8 molecules in phylogenetic tree analysis. A conserved gene synteny was found with the salmon TLR7/8a members as seen in other vertebrate loci. Deduced domain organisation of salmon TLR7 and TLR8 molecules showed similar structural features, with equal numbers of leucine-rich repeats (LRRs) and insertion motifs. Individual TLR molecules were expressed in a similar pattern between parr and post-smolts, with a high expression level in immune tissues. Promoter analysis predicted several transcription factor binding sites in the TLR8a1/2 and TLR8b1 5′ flanking regions, namely C/EBP, AP-1, STAT, NFκB, and IRF family, suggesting cytokine regulation of the genes. Hence, three recombinant cytokines, type I IFN, IFNγ and IL-1β were used to study the regulation of the salmon TLR gene expression levels in primary head kidney cells and the Salmon Head Kidney-1 (SHK-1) cell line. Salmon TLR7 and TLR8a1 gene expression was more sensitive to type I IFN and IFNγ treatment in primary head kidney cells and SHK-1 cells respectively, with no significant up-regulation of TLR8a2 and TLR8b2 by any of the treatments. On the other hand, salmon TLR8a1 and TLR8b1 were most sensitive to IL-1β treatment in SHK-1 cells and primary head kidney cells, respectively. TLR8b2 was undetectable in SHK-1 cells under these same conditions.

KW - Toll-like receptor

KW - TLR7

KW - TLR8

KW - Atlantic salmon

KW - Innate immunity

KW - Gene expression

U2 - 10.1016/j.dci.2013.05.013

DO - 10.1016/j.dci.2013.05.013

M3 - Article

VL - 41

SP - 295

EP - 305

JO - Developmental and Comparative Immunology

JF - Developmental and Comparative Immunology

SN - 0145-305X

IS - 2

ER -