Importance of Full-Collapse Vesicle Exocytosis for Synaptic Fatigue-Resistance at Rat Fast and Slow Muscle Neuromuscular Junctions

Jane E. Rudling, Benjamin D Drever, Brian Reid, Guy S. Bewick (Corresponding Author)

Research output: Contribution to journalArticle

1 Citation (Scopus)
7 Downloads (Pure)

Abstract

Neurotransmitter release during trains of activity usually involves two vesicle pools (readily releasable pool, or RRP, and reserve pool, or RP) and two exocytosis mechanisms (“full-collapse” and “kiss-and-run”). However, synaptic terminals are adapted to differing patterns of use and the relationship of these factors to enabling terminals to adapt to differing transmitter release demands is not clear. We have therefore tested their contribution to a terminal’s ability to maintain release, or synaptic fatiguability in motor terminals innervating fast-twitch (fatiguable), and postural slow-twitch (fatigue-resistant) muscles. We used electrophysiological recording of neurotransmission and fluorescent dye markers of vesicle recycling to compare the effects of kinase inhibitors of varying myosin light chain kinase (MLCK) selectivity (staurosporine, wortmannin, LY294002 & ML-9) on vesicle pools, exocytosis mechanisms, and sustained neurotransmitter release, using postural-type activity train (20 Hz for 10 min) in these muscles. In both muscles, a small, rapidly depleted vesicle pool (the RRP) was inhibitor insensitive, continuing to release FM1-43, which is a marker of full-collapse exocytosis. MLCK-inhibiting kinases blocked all remaining FM1-43 loss from labelled vesicles. However, FM2-10 release only slowed, indicating continuing kiss-and-run exocytosis. Despite this, kinase inhibitors did not affect transmitter release fatiguability under normal conditions. However, augmenting release in high Ca2+ entirely blocked the synaptic fatigue-resistance of terminals in slow-twitch muscles. Thus, full-collapse exocytosis from most vesicles (the RP) is not essential for maintaining release during a single prolonged train. However, it becomes critical in fatigue-resistant terminals during high vesicle demand.
Original languageEnglish
Article number1936
Journal International Journal of Molecular Sciences
Volume19
Issue number7
Early online date2 Jul 2018
DOIs
Publication statusPublished - 2018

Keywords

  • synaptic transmission
  • neuromuscular junction
  • myosin light chain kinase
  • FM1-43

Fingerprint Dive into the research topics of 'Importance of Full-Collapse Vesicle Exocytosis for Synaptic Fatigue-Resistance at Rat Fast and Slow Muscle Neuromuscular Junctions'. Together they form a unique fingerprint.

  • Cite this