Imputation of missing sub-hourly precipitation data in a large sensor network: a machine learning approach

Benedict Chivers, John Wallbank, Steven Cole, Ondrej Sebek, Simon Stanley, Matthew Fry, Georgios Leontidis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)
10 Downloads (Pure)

Abstract

Precipitation data collected at sub-hourly resolution represents specific challenges for missing data recovery by being largely stochastic in nature and highly unbalanced in the duration of rain vs non-rain. Here we present a two-step analysis utilising current machine learning techniques for imputing precipitation data sampled at 30-minute intervals by devolving the task into (a) the classification of rain or non-rain samples, and (b) regressing the absolute values of predicted rain samples. Investigating 37 weather stations in the UK, this machine learning process produces more accurate predictions for recovering precipitation data than an established surface fitting technique utilising neighbouring rain gauges. Increasing available features for the training of machine learning algorithms increases performance with the integration of weather data at the target site with externally sourced rain gauges providing the highest performance. This method informs machine learning models by utilising information in concurrently collected environmental data to make accurate predictions of missing rain data. Capturing complex non-linear relationships from weakly correlated variables is critical for data recovery at sub-hourly resolutions. Such pipelines for data recovery can be developed and deployed for highly automated and near instantaneous imputation of missing values in ongoing datasets at high temporal resolutions.
Original languageEnglish
Article number125126
Number of pages12
JournalJournal of Hydrology
Volume588
Early online date30 May 2020
DOIs
Publication statusPublished - Sept 2020

Bibliographical note

This research was supported by a UKRI-NERC Constructing a Digital Environment Strategic Priority grant “Engineering Transformation for the Integration of Sensor Networks: A Feasibility Study” [NE/S016236/1 & NE/S016244/1].

Keywords

  • Machine learning
  • Data imputation
  • Environmental sensor networks
  • Precipitation
  • Soil moisture
  • Gradient boosted trees

Fingerprint

Dive into the research topics of 'Imputation of missing sub-hourly precipitation data in a large sensor network: a machine learning approach'. Together they form a unique fingerprint.

Cite this