TY - JOUR
T1 - Inferring activity budgets in wild animals to estimate the consequences of disturbances
AU - Christiansen, Fredrik
AU - Rasmussen, Marianne H.
AU - Lusseau, David
N1 - We thank the University of Aberdeen, Graduate School Competitive Studentship grant scheme, and International Fund for Animal Welfare for financial support.
We thank Elding Whale Watching, the municipality of Garður, and the Icelandic Maritime Administration for logistical support. We thank Mývatn Research Station for providing research equipment. We thank S. Palmer, M. Marcoux, and T. Cornulier for providing valuable advice on the modeling approach. We also thank all the volunteers involved in the data collection. We are grateful for the constructive comments provided by Dr B. Wong and 1 anonymous reviewer, which helped to improve the manuscript.
PY - 2013/11
Y1 - 2013/11
N2 - Activity budgets can provide a direct link to an animals bioenergetic budget and is thus a valuable unit of measure when assessing human-induced nonlethal effects on wildlife conservation status. However, activity budget inference can be challenging for species that are difficult to observe and require multiple observational variables. Here, we assessed whether whalewatching boat interactions could affect the activity budgets of minke whales (Balaenoptera acutorostrata). We used a stepwise modeling approach to quantitatively record, identify, and assign activity states to continuous behavioral time series data, to estimate activity budgets. First, we used multiple behavioral variables, recorded from continuous visual observations of individual animals, to quantitatively identify and define behavioral types. Activity states were then assigned to each sampling unit, using a combination of hidden and observed states. Three activity states were identified: nonfeeding, foraging, and surface feeding (SF). From the resulting time series of activity states, transition probability matrices were estimated using first-order Markov chains. We then simulated time series of activity states, using Monte Carlo methods based on the transition probability matrices, to obtain activity budgets, accounting for heterogeneity in state duration. Whalewatching interactions reduced the time whales spend foraging and SF, potentially resulting in an overall decrease in energy intake of 42%. This modeling approach thus provides a means to link short-term behavioral changes resulting from human disturbance to potential long-term bioenergetic consequences in animals. It also provides an analytical framework applicable to other species when direct observations of activity states are not possible.
AB - Activity budgets can provide a direct link to an animals bioenergetic budget and is thus a valuable unit of measure when assessing human-induced nonlethal effects on wildlife conservation status. However, activity budget inference can be challenging for species that are difficult to observe and require multiple observational variables. Here, we assessed whether whalewatching boat interactions could affect the activity budgets of minke whales (Balaenoptera acutorostrata). We used a stepwise modeling approach to quantitatively record, identify, and assign activity states to continuous behavioral time series data, to estimate activity budgets. First, we used multiple behavioral variables, recorded from continuous visual observations of individual animals, to quantitatively identify and define behavioral types. Activity states were then assigned to each sampling unit, using a combination of hidden and observed states. Three activity states were identified: nonfeeding, foraging, and surface feeding (SF). From the resulting time series of activity states, transition probability matrices were estimated using first-order Markov chains. We then simulated time series of activity states, using Monte Carlo methods based on the transition probability matrices, to obtain activity budgets, accounting for heterogeneity in state duration. Whalewatching interactions reduced the time whales spend foraging and SF, potentially resulting in an overall decrease in energy intake of 42%. This modeling approach thus provides a means to link short-term behavioral changes resulting from human disturbance to potential long-term bioenergetic consequences in animals. It also provides an analytical framework applicable to other species when direct observations of activity states are not possible.
KW - animal movement
KW - Markov chains
KW - minke whale
KW - mixture model
KW - Monte Carlo
KW - tourism impact
U2 - 10.1093/beheco/art086
DO - 10.1093/beheco/art086
M3 - Article
VL - 24
SP - 1415
EP - 1425
JO - Behavioral Ecology
JF - Behavioral Ecology
SN - 1045-2249
IS - 6
ER -