Joint interpretation of magnetotelluric, seismic, and well-log data in Hontomín (Spain)

Xènia Ogaya*, Juan Alcalde, Ignacio Marzán, Juanjo Ledo, Pilar Queralt, Alex Marcuello, David Martí, Eduard Saura, Ramon Carbonell, Beatriz Benjumea

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
3 Downloads (Pure)


Hontomín (N of Spain) hosts the first Spanish CO2 storage pilot plant. The subsurface characterization of the site included the acquisition of a 3-D seismic reflection and a circumscribed 3-D magnetotelluric (MT) survey. This paper addresses the combination of the seismic and MT results, together with the available well-log data, in order to achieve a better characterization of the Hontomín subsurface. We compare the structural model obtained from the interpretation of the seismic data with the geoelectrical model resulting from the MT data. The models correlate well in the surroundings of the CO2 injection area with the major structural differences observed related to the presence of faults. The combination of the two methods allowed a more detailed characterization of the faults, defining their geometry, and fluid flow characteristics, which are key for the risk assessment of the storage site. Moreover, we use the well-log data of the existing wells to derive resistivity-velocity relationships for the subsurface and compute a 3-D velocity model of the site using the 3-D resistivity model as a reference. The derived velocity model is compared to both the predicted and logged velocity in the injection and monitoring wells, for an overall assessment of the computed resistivity-velocity relationships. The major differences observed are explained by the different resolution of the compared geophysical methods. Finally, the derived velocity model for the near surface is compared with the velocity model used for the static corrections in the seismic data. The results allowed extracting information about the characteristics of the shallow unconsolidated sediments, suggesting possible clay and water content variations. The good correlation of the velocity models derived from the resistivity-velocity relationships and the well-log data demonstrate the potential of the combination of the two methods for characterizing the subsurface, in terms of its physical properties (velocity, resistivity) and structural/reservoir characteristics. This work explores the compatibility of the seismic and magnetotelluric methods across scales highlighting the importance of joint interpretation in near surface and reservoir characterization.

Original languageEnglish
Pages (from-to)943-958
Number of pages16
JournalSolid earth
Issue number3
Publication statusPublished - 9 Jun 2016


Dive into the research topics of 'Joint interpretation of magnetotelluric, seismic, and well-log data in Hontomín (Spain)'. Together they form a unique fingerprint.

Cite this