Cellules de Kazhdan-Lusztig et correspondance de Robinson-Schensted

Translated title of the contribution: Kazhdan–Lusztig cells and Robinson–Schensted correspondence

Lacrimioara Iancu

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Kazhdan and Lusztig have introduced (left, right and two-sided) cells in an arbitrary Coxeter group. For the symmetric group, they showed that these cells are given by the Robinson-Schensted correspondence. Here, we describe a Robinson-Schensted correspondence for the complex reflection groups G(e. 1. n). In a recent joint work with C. Bonnafe, we have shown that, in the case e = 2 (where G(2, 1, n) is the Coxeter group of type B-n), this correspondence determines the Kazhdan-Lusztig cells with respect to certain unequal parameters. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.

Original languageFrench
Pages (from-to)791-794
Number of pages4
JournalComptes Rendus Mathematique
Volume336
Issue number10
Early online date8 May 2003
DOIs
Publication statusPublished - 15 May 2003

Cite this

Cellules de Kazhdan-Lusztig et correspondance de Robinson-Schensted. / Iancu, Lacrimioara.

In: Comptes Rendus Mathematique, Vol. 336, No. 10, 15.05.2003, p. 791-794.

Research output: Contribution to journalArticle

Iancu, Lacrimioara. / Cellules de Kazhdan-Lusztig et correspondance de Robinson-Schensted. In: Comptes Rendus Mathematique. 2003 ; Vol. 336, No. 10. pp. 791-794.
@article{b30c7a8894764a28a1259b7c0d98c2bd,
title = "Cellules de Kazhdan-Lusztig et correspondance de Robinson-Schensted",
abstract = "Kazhdan and Lusztig have introduced (left, right and two-sided) cells in an arbitrary Coxeter group. For the symmetric group, they showed that these cells are given by the Robinson-Schensted correspondence. Here, we describe a Robinson-Schensted correspondence for the complex reflection groups G(e. 1. n). In a recent joint work with C. Bonnafe, we have shown that, in the case e = 2 (where G(2, 1, n) is the Coxeter group of type B-n), this correspondence determines the Kazhdan-Lusztig cells with respect to certain unequal parameters. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.",
author = "Lacrimioara Iancu",
year = "2003",
month = "5",
day = "15",
doi = "10.1016/S1631-073X(03)00172-9",
language = "French",
volume = "336",
pages = "791--794",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "10",

}

TY - JOUR

T1 - Cellules de Kazhdan-Lusztig et correspondance de Robinson-Schensted

AU - Iancu, Lacrimioara

PY - 2003/5/15

Y1 - 2003/5/15

N2 - Kazhdan and Lusztig have introduced (left, right and two-sided) cells in an arbitrary Coxeter group. For the symmetric group, they showed that these cells are given by the Robinson-Schensted correspondence. Here, we describe a Robinson-Schensted correspondence for the complex reflection groups G(e. 1. n). In a recent joint work with C. Bonnafe, we have shown that, in the case e = 2 (where G(2, 1, n) is the Coxeter group of type B-n), this correspondence determines the Kazhdan-Lusztig cells with respect to certain unequal parameters. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.

AB - Kazhdan and Lusztig have introduced (left, right and two-sided) cells in an arbitrary Coxeter group. For the symmetric group, they showed that these cells are given by the Robinson-Schensted correspondence. Here, we describe a Robinson-Schensted correspondence for the complex reflection groups G(e. 1. n). In a recent joint work with C. Bonnafe, we have shown that, in the case e = 2 (where G(2, 1, n) is the Coxeter group of type B-n), this correspondence determines the Kazhdan-Lusztig cells with respect to certain unequal parameters. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.

U2 - 10.1016/S1631-073X(03)00172-9

DO - 10.1016/S1631-073X(03)00172-9

M3 - Article

VL - 336

SP - 791

EP - 794

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 10

ER -