Latitudinal limits to the predicted increase of the peatland carbon sink with warming

Angela V. Gallego-Sala (Corresponding Author), Daniel J. Charman (Corresponding Author), Simon Brewer, Susan E. Page, I. Colin Prentice, Pierre Friedlingstein, Steve Moreton, Matthew J. Amesbury, David W. Beilman, Svante Björck, Tatiana Blyakharchuk, Christopher Bochicchio, Robert K. Booth, Joan Bunbury, Philip Camill, Donna Carless, Rodney A. Chimner, Michael Clifford, Elizabeth Cressey, Colin Courtney-Mustaphi & 55 others François De Vleeschouwer, Rixt de Jong, Barbara Fialkiewicz-Koziel, Sarah A. Finkelstein, Michelle Garneau, Esther Githumbi1, John Hribjlan, James Holmquist, Paul D.M. Hughes, Chris D. Jones, Miriam C. Jones, Edgar Karofeld, Eric S. Klein, Ulla Kokfelt, Atte Korhola, Terri Lacourse, Gael Le Roux, Mariusz Lamentowicz, David Large, Martin Lavoie, Julie Loisel, Helen Mackay, Glen MacDonald, Markku Makila, Gabriel Magnan, Robert Marchant, Katarzyna Marcisz, Antonio Martínez Cortizas, Charly Massa, Paul Mathijssen, Dimitri Mauquoy, Timothy Mighall, Fraser J.G. Mitchell, Patrick Moss, Jonathan E. Nichols, Pirita Oksanen, Lisa Orme, Maara S. Packalen, Stephen Robinson, Thomas P. Roland, Nicole K. Sanderson, A. Britta K. Sannel, Noemí Silva-Sánchez, Natascha Steinberg, Graeme T. Swindles, T. Edward Turner, Joanna Uglow, Minna Valiranta, Simon van Bellen, Marjolein van der Linden, Bas van Geel, Guoping Wang, Zicheng Yu, Joana Zaragoza-Castells, Yan Zhao

Research output: Contribution to journalArticle

17 Citations (Scopus)
5 Downloads (Pure)

Abstract

The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
Original languageEnglish
Pages (from-to)907-913
Number of pages7
JournalNature Climate Change
Volume8
Early online date10 Sep 2018
DOIs
Publication statusPublished - 2018

Fingerprint

carbon sink
peatland
warming
climate
carbon
twenty-first century
projection
climate feedback
scenario
twenty first century
photosynthetically active radiation
accumulation rate
present
growing season
decomposition

Keywords

  • peatlands
  • carbon cycle
  • climate change
  • tropical peat
  • last millennium

Cite this

Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Prentice, I. C., Friedlingstein, P., ... Zhao, Y. (2018). Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 8, 907-913. https://doi.org/10.1038/s41558-018-0271-1

Latitudinal limits to the predicted increase of the peatland carbon sink with warming. / Gallego-Sala, Angela V. (Corresponding Author); Charman, Daniel J. (Corresponding Author); Brewer, Simon; Page, Susan E.; Prentice, I. Colin; Friedlingstein, Pierre; Moreton, Steve; Amesbury, Matthew J.; Beilman, David W.; Björck, Svante; Blyakharchuk, Tatiana; Bochicchio, Christopher; Booth, Robert K.; Bunbury, Joan; Camill, Philip; Carless, Donna; Chimner, Rodney A.; Clifford, Michael; Cressey, Elizabeth; Courtney-Mustaphi, Colin; De Vleeschouwer, François; de Jong, Rixt; Fialkiewicz-Koziel, Barbara; Finkelstein, Sarah A.; Garneau, Michelle; Githumbi1, Esther; Hribjlan, John; Holmquist, James; Hughes, Paul D.M.; Jones, Chris D.; Jones, Miriam C.; Karofeld, Edgar; Klein, Eric S.; Kokfelt, Ulla; Korhola, Atte; Lacourse, Terri; Le Roux, Gael; Lamentowicz, Mariusz; Large, David; Lavoie, Martin; Loisel, Julie; Mackay, Helen; MacDonald, Glen; Makila, Markku; Magnan, Gabriel; Marchant, Robert; Marcisz, Katarzyna; Martínez Cortizas, Antonio; Massa, Charly; Mathijssen, Paul; Mauquoy, Dimitri; Mighall, Timothy; Mitchell, Fraser J.G.; Moss, Patrick; Nichols, Jonathan E.; Oksanen, Pirita; Orme, Lisa; Packalen, Maara S.; Robinson, Stephen; Roland, Thomas P.; Sanderson, Nicole K.; Sannel, A. Britta K.; Silva-Sánchez, Noemí ; Steinberg, Natascha; Swindles, Graeme T.; Turner, T. Edward; Uglow, Joanna; Valiranta, Minna; van Bellen, Simon; van der Linden, Marjolein; van Geel, Bas; Wang, Guoping; Yu, Zicheng; Zaragoza-Castells, Joana; Zhao, Yan.

In: Nature Climate Change, Vol. 8, 2018, p. 907-913.

Research output: Contribution to journalArticle

Gallego-Sala, AV, Charman, DJ, Brewer, S, Page, SE, Prentice, IC, Friedlingstein, P, Moreton, S, Amesbury, MJ, Beilman, DW, Björck, S, Blyakharchuk, T, Bochicchio, C, Booth, RK, Bunbury, J, Camill, P, Carless, D, Chimner, RA, Clifford, M, Cressey, E, Courtney-Mustaphi, C, De Vleeschouwer, F, de Jong, R, Fialkiewicz-Koziel, B, Finkelstein, SA, Garneau, M, Githumbi1, E, Hribjlan, J, Holmquist, J, Hughes, PDM, Jones, CD, Jones, MC, Karofeld, E, Klein, ES, Kokfelt, U, Korhola, A, Lacourse, T, Le Roux, G, Lamentowicz, M, Large, D, Lavoie, M, Loisel, J, Mackay, H, MacDonald, G, Makila, M, Magnan, G, Marchant, R, Marcisz, K, Martínez Cortizas, A, Massa, C, Mathijssen, P, Mauquoy, D, Mighall, T, Mitchell, FJG, Moss, P, Nichols, JE, Oksanen, P, Orme, L, Packalen, MS, Robinson, S, Roland, TP, Sanderson, NK, Sannel, ABK, Silva-Sánchez, N, Steinberg, N, Swindles, GT, Turner, TE, Uglow, J, Valiranta, M, van Bellen, S, van der Linden, M, van Geel, B, Wang, G, Yu, Z, Zaragoza-Castells, J & Zhao, Y 2018, 'Latitudinal limits to the predicted increase of the peatland carbon sink with warming' Nature Climate Change, vol. 8, pp. 907-913. https://doi.org/10.1038/s41558-018-0271-1
Gallego-Sala AV, Charman DJ, Brewer S, Page SE, Prentice IC, Friedlingstein P et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change. 2018;8:907-913. https://doi.org/10.1038/s41558-018-0271-1
Gallego-Sala, Angela V. ; Charman, Daniel J. ; Brewer, Simon ; Page, Susan E. ; Prentice, I. Colin ; Friedlingstein, Pierre ; Moreton, Steve ; Amesbury, Matthew J. ; Beilman, David W. ; Björck, Svante ; Blyakharchuk, Tatiana ; Bochicchio, Christopher ; Booth, Robert K. ; Bunbury, Joan ; Camill, Philip ; Carless, Donna ; Chimner, Rodney A. ; Clifford, Michael ; Cressey, Elizabeth ; Courtney-Mustaphi, Colin ; De Vleeschouwer, François ; de Jong, Rixt ; Fialkiewicz-Koziel, Barbara ; Finkelstein, Sarah A. ; Garneau, Michelle ; Githumbi1, Esther ; Hribjlan, John ; Holmquist, James ; Hughes, Paul D.M. ; Jones, Chris D. ; Jones, Miriam C. ; Karofeld, Edgar ; Klein, Eric S. ; Kokfelt, Ulla ; Korhola, Atte ; Lacourse, Terri ; Le Roux, Gael ; Lamentowicz, Mariusz ; Large, David ; Lavoie, Martin ; Loisel, Julie ; Mackay, Helen ; MacDonald, Glen ; Makila, Markku ; Magnan, Gabriel ; Marchant, Robert ; Marcisz, Katarzyna ; Martínez Cortizas, Antonio ; Massa, Charly ; Mathijssen, Paul ; Mauquoy, Dimitri ; Mighall, Timothy ; Mitchell, Fraser J.G. ; Moss, Patrick ; Nichols, Jonathan E. ; Oksanen, Pirita ; Orme, Lisa ; Packalen, Maara S. ; Robinson, Stephen ; Roland, Thomas P. ; Sanderson, Nicole K. ; Sannel, A. Britta K. ; Silva-Sánchez, Noemí ; Steinberg, Natascha ; Swindles, Graeme T. ; Turner, T. Edward ; Uglow, Joanna ; Valiranta, Minna ; van Bellen, Simon ; van der Linden, Marjolein ; van Geel, Bas ; Wang, Guoping ; Yu, Zicheng ; Zaragoza-Castells, Joana ; Zhao, Yan. / Latitudinal limits to the predicted increase of the peatland carbon sink with warming. In: Nature Climate Change. 2018 ; Vol. 8. pp. 907-913.
@article{b9b7da2b0dba4542a67a9daba6a0cec2,
title = "Latitudinal limits to the predicted increase of the peatland carbon sink with warming",
abstract = "The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.",
keywords = "peatlands, carbon cycle, climate change, tropical peat, last millennium",
author = "Gallego-Sala, {Angela V.} and Charman, {Daniel J.} and Simon Brewer and Page, {Susan E.} and Prentice, {I. Colin} and Pierre Friedlingstein and Steve Moreton and Amesbury, {Matthew J.} and Beilman, {David W.} and Svante Bj{\"o}rck and Tatiana Blyakharchuk and Christopher Bochicchio and Booth, {Robert K.} and Joan Bunbury and Philip Camill and Donna Carless and Chimner, {Rodney A.} and Michael Clifford and Elizabeth Cressey and Colin Courtney-Mustaphi and {De Vleeschouwer}, Fran{\cc}ois and {de Jong}, Rixt and Barbara Fialkiewicz-Koziel and Finkelstein, {Sarah A.} and Michelle Garneau and Esther Githumbi1 and John Hribjlan and James Holmquist and Hughes, {Paul D.M.} and Jones, {Chris D.} and Jones, {Miriam C.} and Edgar Karofeld and Klein, {Eric S.} and Ulla Kokfelt and Atte Korhola and Terri Lacourse and {Le Roux}, Gael and Mariusz Lamentowicz and David Large and Martin Lavoie and Julie Loisel and Helen Mackay and Glen MacDonald and Markku Makila and Gabriel Magnan and Robert Marchant and Katarzyna Marcisz and {Mart{\'i}nez Cortizas}, Antonio and Charly Massa and Paul Mathijssen and Dimitri Mauquoy and Timothy Mighall and Mitchell, {Fraser J.G.} and Patrick Moss and Nichols, {Jonathan E.} and Pirita Oksanen and Lisa Orme and Packalen, {Maara S.} and Stephen Robinson and Roland, {Thomas P.} and Sanderson, {Nicole K.} and Sannel, {A. Britta K.} and Noem{\'i} Silva-S{\'a}nchez and Natascha Steinberg and Swindles, {Graeme T.} and Turner, {T. Edward} and Joanna Uglow and Minna Valiranta and {van Bellen}, Simon and {van der Linden}, Marjolein and {van Geel}, Bas and Guoping Wang and Zicheng Yu and Joana Zaragoza-Castells and Yan Zhao",
note = "The work presented in this article was funded by the Natural Environment Research Council (NERC standard grant number NE/I012915/1) to D.J.C., A.G.S., I.C.P., S.P. and P.F., supported by NERC Radiocarbon Allocation 1681.1012. The work and ideas in this article have also been supported by PAGES funding, as part of C-PEAT. CDJ was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). This research is also a contribution to the AXA Chair Programme in Biosphere and Climate Impacts and the Imperial College initiative on Grand Challenges in Ecosystems and the Environment. This research was also supported by a grant from the National Science Centre, Poland 2015/17/B/ST10/01656. We wish to thank Dale Vitt, Jukka Alm, Ilka E. Bauer, Nicole Rausch, Veronique Beaulieu-Audy, Louis Tremblay, Steve Pratte, Alex Lamarre, David Anderson and Alex Ireland for contributing data to this compilation. We are also grateful to Steve Frolking for suggestions on different moisture indexes and to Alex Whittle and Fiona Dearden for their work in the Exeter laboratories.",
year = "2018",
doi = "10.1038/s41558-018-0271-1",
language = "English",
volume = "8",
pages = "907--913",
journal = "Nature Climate Change",
issn = "1758-678X",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Latitudinal limits to the predicted increase of the peatland carbon sink with warming

AU - Gallego-Sala, Angela V.

AU - Charman, Daniel J.

AU - Brewer, Simon

AU - Page, Susan E.

AU - Prentice, I. Colin

AU - Friedlingstein, Pierre

AU - Moreton, Steve

AU - Amesbury, Matthew J.

AU - Beilman, David W.

AU - Björck, Svante

AU - Blyakharchuk, Tatiana

AU - Bochicchio, Christopher

AU - Booth, Robert K.

AU - Bunbury, Joan

AU - Camill, Philip

AU - Carless, Donna

AU - Chimner, Rodney A.

AU - Clifford, Michael

AU - Cressey, Elizabeth

AU - Courtney-Mustaphi, Colin

AU - De Vleeschouwer, François

AU - de Jong, Rixt

AU - Fialkiewicz-Koziel, Barbara

AU - Finkelstein, Sarah A.

AU - Garneau, Michelle

AU - Githumbi1, Esther

AU - Hribjlan, John

AU - Holmquist, James

AU - Hughes, Paul D.M.

AU - Jones, Chris D.

AU - Jones, Miriam C.

AU - Karofeld, Edgar

AU - Klein, Eric S.

AU - Kokfelt, Ulla

AU - Korhola, Atte

AU - Lacourse, Terri

AU - Le Roux, Gael

AU - Lamentowicz, Mariusz

AU - Large, David

AU - Lavoie, Martin

AU - Loisel, Julie

AU - Mackay, Helen

AU - MacDonald, Glen

AU - Makila, Markku

AU - Magnan, Gabriel

AU - Marchant, Robert

AU - Marcisz, Katarzyna

AU - Martínez Cortizas, Antonio

AU - Massa, Charly

AU - Mathijssen, Paul

AU - Mauquoy, Dimitri

AU - Mighall, Timothy

AU - Mitchell, Fraser J.G.

AU - Moss, Patrick

AU - Nichols, Jonathan E.

AU - Oksanen, Pirita

AU - Orme, Lisa

AU - Packalen, Maara S.

AU - Robinson, Stephen

AU - Roland, Thomas P.

AU - Sanderson, Nicole K.

AU - Sannel, A. Britta K.

AU - Silva-Sánchez, Noemí

AU - Steinberg, Natascha

AU - Swindles, Graeme T.

AU - Turner, T. Edward

AU - Uglow, Joanna

AU - Valiranta, Minna

AU - van Bellen, Simon

AU - van der Linden, Marjolein

AU - van Geel, Bas

AU - Wang, Guoping

AU - Yu, Zicheng

AU - Zaragoza-Castells, Joana

AU - Zhao, Yan

N1 - The work presented in this article was funded by the Natural Environment Research Council (NERC standard grant number NE/I012915/1) to D.J.C., A.G.S., I.C.P., S.P. and P.F., supported by NERC Radiocarbon Allocation 1681.1012. The work and ideas in this article have also been supported by PAGES funding, as part of C-PEAT. CDJ was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). This research is also a contribution to the AXA Chair Programme in Biosphere and Climate Impacts and the Imperial College initiative on Grand Challenges in Ecosystems and the Environment. This research was also supported by a grant from the National Science Centre, Poland 2015/17/B/ST10/01656. We wish to thank Dale Vitt, Jukka Alm, Ilka E. Bauer, Nicole Rausch, Veronique Beaulieu-Audy, Louis Tremblay, Steve Pratte, Alex Lamarre, David Anderson and Alex Ireland for contributing data to this compilation. We are also grateful to Steve Frolking for suggestions on different moisture indexes and to Alex Whittle and Fiona Dearden for their work in the Exeter laboratories.

PY - 2018

Y1 - 2018

N2 - The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.

AB - The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.

KW - peatlands

KW - carbon cycle

KW - climate change

KW - tropical peat

KW - last millennium

U2 - 10.1038/s41558-018-0271-1

DO - 10.1038/s41558-018-0271-1

M3 - Article

VL - 8

SP - 907

EP - 913

JO - Nature Climate Change

JF - Nature Climate Change

SN - 1758-678X

ER -