Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion

Lesley T. Lancaster, Rachael Y. Dudaniec, Bengt Hansson, Erik I. Svensson

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)
16 Downloads (Pure)

Abstract

Aim Climate change is currently altering the geographical distribution of species, but how this process contributes to biogeographical variation in ecological traits is unknown. Range-shifting species are predicted to encounter and respond to new selective regimes during their expansion phase, but also carry historical adaptations to their ancestral range. We sought to identify how historical and novel components of the environment interact to shape latitudinal trends in thermal tolerance, thermal tolerance breadth and phenotypic plasticity of a range-shifting species. Location Southern and central Sweden. Methods To evaluate phenotypic responses to changes in the thermal selective environment, we experimentally determined the upper and lower thermal tolerances of > 2000 wild-caught damselflies (Ischnura elegans) from populations distributed across core and expanding range-edge regions. We then identified changing correlations between thermal tolerance, climate and recent weather events across the range expansion. Niche modelling was employed to evaluate the relative contributions of varying climatic selective regimes to overall habitat suitability for the species in core versus range-edge regions. Results Upper thermal tolerance exhibited local adaptation to climate in the core region, but showed evidence of having been released from thermal selection during the current range expansion. In contrast, chill coma recovery exhibited local adaptation across the core region and range expansion, corresponding to increased climatic variability at higher latitudes. Adaptive plasticity of lower thermal tolerances (acclimation ability) increased towards the northern, expanding range edge. Main conclusions Our results suggest micro-evolutionary mechanisms for several large-scale and general biogeographical patterns, including spatially and latitudinally invariant heat tolerances (Brett's rule) and increased thermal acclimation rates and niche breadths at higher latitudes. Population-level processes unique to climate-mediated range expansions may commonly underpin many broader, macro-physiological trends.
Original languageEnglish
Pages (from-to)1953-1963
Number of pages11
JournalJournal of Biogeography
Volume42
Issue number10
Early online date14 Jul 2015
DOIs
Publication statusPublished - Oct 2015

Bibliographical note

ACKNOWLEDGEMENTS
We thank Hanna Bensch, Yuma Takahashi and Hannes Wiese for their assistance with fieldwork. Thanks to Jarrod Hadfield and Julien Martin for advice on model fitting in MCMCglmm. Funding for this project was provided by the strategic research environment Biodiversity and Ecosystem Services in a Changing Climate (BECC; a joint Lund Gothenberg University initiative) to B.H. and L.L., the Wenner-Gren Foundation to B.H. and R.Y.D., the Swedish Research Council (VR) and The Royal Swedish Academy of Sciences(KVA) Stiftelsen Anna-Greta and Holger Crafoords Fund to E.I.S., and VR and The Crafoord Foundation to B.H.

Funded by
Biodiversity and Ecosystem Services in a Changing Climate
Wenner-Gren Foundation
Swedish Research Council
The Royal Swedish Academy of Sciences
Stiftelsen Anna-Greta
Holger Crafoords Fund
The Crafoord Foundation

Keywords

  • character release
  • cold stress
  • colonization
  • habitat suitability
  • insect
  • macro-ecology
  • Ischnura elegans
  • Maxent
  • range shifts
  • species distribution modelling
  • Sweden
  • temperature ramping
  • thermotolerance

Fingerprint

Dive into the research topics of 'Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion'. Together they form a unique fingerprint.

Cite this