Long-term geomorphic adjustments following the recoupling of a tributary to its main-stem river

Joel Blackburn* (Corresponding Author), Baptiste Marteau, Damià Vericat, Ramon Batalla, Jean-Christophe Comte, Christopher Gibbins

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
4 Downloads (Pure)

Abstract

River restoration and rehabilitation projects are widespread, but rarely include the data needed to fully evaluate if they are successful in achieving their goals or how long the process of readjustment takes before a new ‘recovered’ regime state is reached. Here we present a seven-year post-project dataset detailing the morpho-sedimentary responses of a river to the reconnection of a formerly diverted tributary, and relate observed changes to conditions in the river prior to the reconnection. We describe changes in the tributary and main-stem channels, including changes in channel planform, morphology, and the export of coarse and fine sediment from the tributary to the main-stem river. We use the data to develop a conceptual model of the system's response to the reconnection.

Marked geomorphic changes occurred within the first two years after the reconnection. Changes during this ‘shock phase’ included dramatic erosion and subsequent deepening and widening of the tributary channel, rapid development of a confluence bar and an increase in fine sediment delivered to the main-stem. After this shock phase, and despite the continued occurrence of high magnitude flow events, the rate of geomorphic change in the tributary began to decrease, and the rate of growth of the confluence bar slowed. Fine sediment volumes in the main-stem also decreased steadily. After an adjustment phase lasting a total of approximately 4.5 yr (including the initial 2-yr shock phase), the tributary to mainstem system appeared to reach a new dynamic equilibrium that we consider the adjusted regime state. This new regime state was characterised by, among other things, an increase in geomorphic heterogeneity in the tributary and main-stem channels.

Changes in both fluvial processes and forms indicate that within 4.5 yr the project was successful in achieving its goal of augmenting sediment and increasing geomorphic heterogeneity. Our conceptual model of adjustment mirrors that developed by Petts and Gurnell (2005), with the river passing through a complex and dynamic adjustment phase before reaching a new regime state. However, unlike the responses to impoundment represented by Petts and Gurnell, our model of river response to rehabilitation charts increases in dynamism and heterogeneity.
Original languageEnglish
Article number108561
Number of pages13
JournalGeomorphology
Volume108561
Early online date10 Jan 2023
DOIs
Publication statusPublished - 1 Mar 2023

Bibliographical note

Open Access via the Elsevier Agreement
The research presented in this paper has been supported by a number of organisations. We thank United Utilities (UU) and the Environment Agency (EA) for funding and support. In particular, we thank Kat Liney and Alice Senior from UU, and Gez Foster and Jane Atkins from EA. Part of this research benefited from the methods and outcomes of the MorphHab (PID2019-104979RB-I00/AEI/10.13039/501100011033) research project. B. Marteau's contribution was in part supported by a postdoctoral fellowship from the EUR H2O'Lyon (ANR-17-EURE-0018). D. Vericat is a Serra Húnter Fellow at the University of Lleida. We are also grateful to the reviewers and editor for their comments that improved the manuscript.

Data Availability Statement

The data that has been used is confidential.

Keywords

  • Geomorphic adjustment
  • Tributary reconnection
  • Long-term monitoring
  • River restoration

Fingerprint

Dive into the research topics of 'Long-term geomorphic adjustments following the recoupling of a tributary to its main-stem river'. Together they form a unique fingerprint.

Cite this