Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter

Ann Carine Vandaele, Oleg Korablev, Frank Daerden, Shohei Aoki, Ian R. Thomas, Francesca Altieri, Miguel López-Valverde, Geronimo Villanueva, Giuliano Liuzzi, Michael D. Smith, Justin T. Erwin, Loïc Trompet, Anna A. Fedorova, Franck Montmessin, Alexander Trokhimovskiy, Denis A. Belyaev, Nikolay I. Ignatiev, Mikhail Luginin, Kevin S. Olsen, Lucio BaggioJuan Alday, Jean-Loup Bertaux, Daria Betsis, David Bolsée, R. Todd Clancy, Edward Cloutis, Cédric Depiesse, Bernd Funke, Maia Garcia-Comas, Jean-Claude Gérard, Marco Giuranna, Francisco Gonzalez-Galindo, Alexey V. Grigoriev, Yuriy S. Ivanov, Jacek Kaminski, Ozgur Karatekin, Franck Lefèvre, Stephen Lewis, Manuel López-Puertas, Arnaud Mahieux, Igor Maslov, Jon Mason, Michael J. Mumma, Lori Neary, Eddy Neefs, Andrey Patrakeev, Dmitry Patsaev, Bojan Ristic, Séverine Robert, Frédéric Schmidt, Alexey Shakun, Nicholas A. Teanby, Sébastien Viscardy, Yannick Willame, James Whiteway, Valérie Wilquet, Michael J. Wolff, Giancarlo Bellucci, Manish R. Patel, Jose-Juan López-Moreno, François Forget, Colin F. Wilson, Håkan Svedhem, Jorge L. Vago, Daniel Rodionov, NOMAD Science Team, Gustavo Alonso-Rodrigo, Sophie Bauduin, Giacomo Carrozzo, Matteo Crismani, Fabiana da Pieve, Emiliano D'Aversa, Giuseppe Etiope, Didier Fussen, Anna Geminale, Leo Gkouvelis, James Holmes, Benoît Hubert, Nicolay I. Ignatiev, Yasumasa Kasaba, David Kass, Armin Kleinböhl, Orietta Lanciano, Hiromu Nakagawa, Robert E. Novak, Fabrizio Oliva, Arianna Piccialli, Etienne Renotte, Birgit Ritter, Nick Schneider, Giuseppe Sindoni, Ed Thiemann, Jean Vander Auwera, Valerie Wilquet, Paulina Wolkenberg, Roger Yelle, ACS Science Team, Konstantin Anufreychik, Gabriele Arnold, Natalia Duxbury, Thierry Fouchet, Davide Grassi, Sandrine Guerlet, Paul Hartogh, Igor Khatuntsev, Nikita Kokonkov, Vladimir Krasnopolsky, Ruslan Kuzmin, Gaétan Lacombe, Emmanuel Lellouch, Anni Määttänen, Emmanuel Marcq, Javier Martin-Torres, Alexander Medvedev, Ehouarn Millour, Boris Moshkin, Cathy Quantin-Nataf, Alexander Rodin, Valery Shematovich, Nicolas Thomas, Alexander Trokhimovsky, Luis Vazquez, Matthieu Vincendon, Roland Young, Ludmila Zasova, Lev Zelenyi, Maria Paz Zorzano

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere.

Original languageEnglish
Pages (from-to)521-525
Number of pages5
JournalNature
Volume568
Issue number7753
Early online date10 Apr 2019
DOIs
Publication statusPublished - 25 Apr 2019

Keywords

  • Martian dust
  • H2O
  • D/H. Exomars Trace Gas Orbiter
  • Astronomy, Astrophysics and Cosmology
  • Astronomi, astrofysik och kosmologi

Fingerprint Dive into the research topics of 'Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter'. Together they form a unique fingerprint.

  • Cite this

    Vandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., López-Valverde, M., Villanueva, G., Liuzzi, G., Smith, M. D., Erwin, J. T., Trompet, L., Fedorova, A. A., Montmessin, F., Trokhimovskiy, A., Belyaev, D. A., Ignatiev, N. I., Luginin, M., Olsen, K. S., ... Zorzano, M. P. (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568(7753), 521-525. https://doi.org/10.1038/s41586-019-1097-3