MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model

B McCormick, D A Lowes, L Colvin, C Torsney, H F Galley

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)
20 Downloads (Pure)

Abstract

BACKGROUND: Neuropathic pain is a common side-effect of chemotherapy. Although precise mechanisms are unclear, oxidative stress and mitochondrial damage are involved. We investigated whether the mitochondria targeted antioxidant, MitoVitE, provided better protection against paclitaxel-induced mitochondrial damage in rat dorsal root ganglion (DRG) cells, than a non-targeted form of vitamin E, Trolox. We also determined whether MitoVitE, compared with duloxetine, could limit paclitaxel-induced mechanical hypersensitivity in rats.

METHODS: Mitochondrial function was measured in DRG cells exposed to paclitaxel with and without MitoVitE or Trolox. The effect of MitoVitE or Trolox on paclitaxel-induced cell killing in cancer cell lines was also determined. Rats received a cumulative dose of 8 mg kg(-1) paclitaxel plus either MitoVitE (2 mg(-1) kg day(-1)), duloxetine (10 mg kg(-1) day(-1)) or vehicle control daily. Mechanical hind paw withdrawal thresholds were measured every two days.

RESULTS: Paclitaxel caused loss of membrane potential in DRG cells. At 100 µM paclitaxel median [range] change was 61[44-78]%, P < 0.0001, which was ameliorated by MitoVitE (86[62-104]%) but not Trolox (46[46-57]%). Similarly, loss of metabolic activity and glutathione induced by paclitaxel (both P < 0.0001) were reduced by MitoVitE but not Trolox. Cytotoxicity of paclitaxel was not affected by co-exposure of ovarian cancer cells to either MitoVitE or Trolox, but was slightly reduced against breast cancer cells, in the presence of Trolox. Mean (SD) areas under the curve of withdrawal thresholds at 6 h after injection in rats given paclitaxel + control, or + MitoVitE (P < 0.0001) or + duloxetine (P < 0.0001) were 110 (5), 145 (10) and 156 (13) respectively.

CONCLUSIONS: Paclitaxel affected mitochondrial function and glutathione in DRG cells, which was abrogated by MitoVitE but not Trolox, without decreasing cancer cell cytotoxicity. In rats, paclitaxel-induced mechanical hypersensitivity was ameliorated by MitoVitE treatment to an extent similar to duloxetine. These data confirm mitochondria as a mechanistic target for paclitaxel-induced damage and suggest mitochondria targeted antioxidants as future therapeutic strategies.

Original languageEnglish
Pages (from-to)659-666
Number of pages8
JournalBritish Journal of Anaesthesia
Volume117
Issue number5
DOIs
Publication statusPublished - 30 Nov 2016

Bibliographical note

The study was funded by the Association of Anaesthetists of Great Britain and Ireland, the British Journal of Anaesthesia/Royal College of Anaesthetists (PhD studentship award to BM) and the Melville Trust.

Keywords

  • pain
  • paclitaxel
  • mitochondria

Fingerprint

Dive into the research topics of 'MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model'. Together they form a unique fingerprint.

Cite this