Mixed population of competing totally asymmetric simple exclusion processes with a shared reservoir of particles

Philip Greulich, Luca Ciandrini, Rosalind Allen, M Carmen Romano

Research output: Contribution to journalArticle

40 Citations (Scopus)


We introduce a mean-field theoretical framework to describe multiple totally asymmetric simple exclusion processes (TASEPs) with different lattice lengths, entry and exit rates, competing for a finite reservoir of particles. We present relations for the partitioning of particles between the reservoir and the lattices: these relations allow us to show that competition for particles can have non-trivial effects on the phase behavior of individual lattices. For a system with non-identical lattices, we find that when a subset of lattices undergoes a phase transition from low to high density, the entire set of lattice currents becomes independent of total particle number. We generalize our approach to systems with a continuous distribution of lattice parameters, for which we demonstrate that measurements of the current carried by a single lattice type can be used to extract the entire distribution of lattice parameters. Our approach applies to populations of TASEPs with any distribution of lattice parameters, and could easily be extended beyond the mean-field case.
Original languageEnglish
Article number011142
Number of pages11
JournalPhysical Review. E, Statistical, Nonlinear and Soft Matter Physics
Issue number1
Publication statusPublished - 27 Jan 2012


Cite this