TY - JOUR
T1 - Multi-scale stochastic organization-oriented coarse-graining exemplified on the human mitotic checkpoint
AU - Mu, Chunyan
AU - Henze, Richard
AU - Puljiz, Mata
AU - Kamaleson, Nishanthan
AU - Huwald, Jan
AU - Haslegrave, John
AU - Di Fenizio, Pietro Speroni
AU - Parker, David
AU - Good, Christopher
AU - Rowe, Jonathan E.
AU - Dittrich, Peter
N1 - Acknowledgements:
This work has been financially supported by the European Union through funding under FP7-ICT-2011-8 project HIERATIC, coordinated by J.R. Contract Grant Number: 316705. Bashar Ibrahim research was funded by the German Research Foundation (DFG) within the Collaborative Research Center 1127 ChemBioSys (SFB 1127, Project C07).
PY - 2019/3/7
Y1 - 2019/3/7
N2 - The complexity of biological models makes methods for their analysis and understanding highly desirable. Here, we demonstrate the orchestration of various novel coarse-graining methods by applying them to the mitotic spindle assembly checkpoint. We begin with a detailed fine-grained spatial model in which individual molecules are simulated moving and reacting in a three-dimensional space. A sequence of manual and automatic coarse-grainings finally leads to the coarsest deterministic and stochastic models containing only four molecular species and four states for each kinetochore, respectively. We are able to relate each more coarse-grained level to a finer one, which allows us to relate model parameters between coarse-grainings and which provides a more precise meaning for the elements of the more abstract models. Furthermore, we discuss how organizational coarse-graining can be applied to spatial dynamics by showing spatial organizations during mitotic checkpoint inactivation. We demonstrate how these models lead to insights if the model has different “meaningful” behaviors that differ in the set of (molecular) species. We conclude that understanding, modeling and analyzing complex bio-molecular systems can greatly benefit from a set of coarse-graining methods that, ideally, can be automatically applied and that allow the different levels of abstraction to be related.
AB - The complexity of biological models makes methods for their analysis and understanding highly desirable. Here, we demonstrate the orchestration of various novel coarse-graining methods by applying them to the mitotic spindle assembly checkpoint. We begin with a detailed fine-grained spatial model in which individual molecules are simulated moving and reacting in a three-dimensional space. A sequence of manual and automatic coarse-grainings finally leads to the coarsest deterministic and stochastic models containing only four molecular species and four states for each kinetochore, respectively. We are able to relate each more coarse-grained level to a finer one, which allows us to relate model parameters between coarse-grainings and which provides a more precise meaning for the elements of the more abstract models. Furthermore, we discuss how organizational coarse-graining can be applied to spatial dynamics by showing spatial organizations during mitotic checkpoint inactivation. We demonstrate how these models lead to insights if the model has different “meaningful” behaviors that differ in the set of (molecular) species. We conclude that understanding, modeling and analyzing complex bio-molecular systems can greatly benefit from a set of coarse-graining methods that, ideally, can be automatically applied and that allow the different levels of abstraction to be related.
U2 - 10.1038/s41598-019-40648-w
DO - 10.1038/s41598-019-40648-w
M3 - Article
VL - 9
SP - 1
EP - 17
JO - Nature Scientific Reports
JF - Nature Scientific Reports
IS - 1
M1 - 3902
ER -