TY - JOUR
T1 - Myostatin dysfunction is associated with lower physical activity and reduced improvements in glucose tolerance in response to caloric restriction in Berlin high mice
AU - Kvedaras, Mindaugas
AU - Minderis, Petras
AU - Krusnauskas, Raulas
AU - Lionikas, Arimantas
AU - Ratkevicius, Aivaras
N1 - Acknowledgements
We would like to thank prof. Lutz Bünger for providing BEH and BEH+/+ mice for this study and Mrs. Indrė Libnickienė for technical assistance
PY - 2019/12
Y1 - 2019/12
N2 - Myostatin is an inhibitor of skeletal muscle growth and might be involved in adaptations to caloric restriction (CR). We compared responses to 12-week 30% CR in male mice of Berlin high strain with myostatin dysfunction (BEH) and wild-type myostatin (BEH+/+). BEH mice were heavier than BEH+/+ mice (58.8 ± 2.0 versus 53.1 ± 2.7 g, p < 0.001), had 1.8-fold greater hind limb muscle mass and were less (p < 0.05) physically active when fed ad libitum. After CR, BEH and BEH+/+ strains experienced similar weight loss (24.7 ± 5.7 versus 20.6 ± 6.5%, p > 0.05, respectively) and decreases (p < 0.001) in plasma IGF-1 and total cholesterol, but loss of hind limb muscle mass was greater (p < 0.001) in BEH mice than BEH+/+ mice. BEH mice had better (p < 0.001) glucose tolerance and showed smaller (p < 0.05) improvements of it than BEH+/+ mice after CR (1038.2 ± 174.7 versus 744.4 ± 95.8 glucose mM× 120 min, p < 0.01 for BEH; 1365.8 ± 218.5 versus 831.5 ± 134.4 glucose mM ×120 min, p < 0.001, for BEH+/+, respectively). In summary, myostatin dysfunction is associated with muscle hypertrophy and high glucose tolerance, but greater muscle wasting and smaller improvements in glucose tolerance in response to CR.
AB - Myostatin is an inhibitor of skeletal muscle growth and might be involved in adaptations to caloric restriction (CR). We compared responses to 12-week 30% CR in male mice of Berlin high strain with myostatin dysfunction (BEH) and wild-type myostatin (BEH+/+). BEH mice were heavier than BEH+/+ mice (58.8 ± 2.0 versus 53.1 ± 2.7 g, p < 0.001), had 1.8-fold greater hind limb muscle mass and were less (p < 0.05) physically active when fed ad libitum. After CR, BEH and BEH+/+ strains experienced similar weight loss (24.7 ± 5.7 versus 20.6 ± 6.5%, p > 0.05, respectively) and decreases (p < 0.001) in plasma IGF-1 and total cholesterol, but loss of hind limb muscle mass was greater (p < 0.001) in BEH mice than BEH+/+ mice. BEH mice had better (p < 0.001) glucose tolerance and showed smaller (p < 0.05) improvements of it than BEH+/+ mice after CR (1038.2 ± 174.7 versus 744.4 ± 95.8 glucose mM× 120 min, p < 0.01 for BEH; 1365.8 ± 218.5 versus 831.5 ± 134.4 glucose mM ×120 min, p < 0.001, for BEH+/+, respectively). In summary, myostatin dysfunction is associated with muscle hypertrophy and high glucose tolerance, but greater muscle wasting and smaller improvements in glucose tolerance in response to CR.
KW - Caloric restriction
KW - Glucose tolerance
KW - Myostatin, muscle fiber composition
KW - Skeletal muscle
UR - http://www.scopus.com/inward/record.url?scp=85074142314&partnerID=8YFLogxK
U2 - 10.1016/j.exger.2019.110751
DO - 10.1016/j.exger.2019.110751
M3 - Article
C2 - 31654693
AN - SCOPUS:85074142314
VL - 128
JO - Experimental Gerontology
JF - Experimental Gerontology
SN - 0531-5565
M1 - 110751
ER -