Nanoscale electrothermal co-simulation: compact dynamic models of hyperbolic heat transport and self-consistent device Monte Carlo

N.J. Pilgrim, W. Batty, R.W. Kelsall

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Two problems in the self-consistent, electrothermal co-simulation of nanoscale devices, are discussed. It is shown that the construction of dynamic compact thermal models for nanoscale devices, based on solution of the hyperbolic (wavelike) heat transport equation, can follow essentially the same approach as the authors' analytical thermal impedance matrix method for the parabolic (diffusive) equation. The physicality of the hyperbolic equation is discussed in the light of calculated results. The analytical impedance matrix method for the time-independent case is employed in a thermally self-consistent device Monte Carlo simulation, illustrating the potential for detailed study of nanoscale electrothermal effects.
Original languageEnglish
Pages (from-to)823-830
Number of pages8
JournalMicroelectronics Journal
Volume35
Issue number10
DOIs
Publication statusPublished - Oct 2004

Fingerprint Dive into the research topics of 'Nanoscale electrothermal co-simulation: compact dynamic models of hyperbolic heat transport and self-consistent device Monte Carlo'. Together they form a unique fingerprint.

Cite this