Neural control of daily and seasonal timing of songbird migration

Tyler J Stevenson, Vinod Kumar

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Bird migration is one of most salient annual events in nature. It involves predictable seasonal movements between breeding and non-breeding habitats. Both circadian and circannual clocks are entrained by photoperiodic cues and time daily and seasonal changes in migratory physiology and behavior. This mini-review provides an update on daily and seasonal rhythms of migratory behavior, and examines the neuroendocrine and molecular pathways involved in the timing of migration in songbirds. Recent findings have identified key neural substrates, and suggest the involvement of multiple neuroendocrine regulatory systems in controlling seasonal states in migrants. We propose that four distinct neural substrates are involved in the timing of migration and include (1) pineal gland and suprachiasmatic nucleus (mSCN); (2) a cluster of hypothalamic nuclei, the mediobasal hypothalamus (MBH); (3) dorsomedial hypothalamic nucleus (DMH); and (4) tanycytes along ependymal layer of the 3rd ventricle (3V). Cluster N, a nucleus in the telencephalon involved in the integration of geomagnetic cues, likely maintains functional connectivity with brain regions involved in timing songbird migration. These nuclei form an interconnected network that coordinates daily timing (pineal gland/mSCN), annual photoperiodic response (MBH, 3V), energetic state (MBH, DMH, 3V), and magnetic compass information (i.e., cluster N) for migration in songbirds.

Original languageEnglish
Pages (from-to)399–409
Number of pages11
JournalJournal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
Volume203
Issue number6-7
Early online date12 Jun 2017
DOIs
Publication statusPublished - Jul 2017

Fingerprint

Songbirds
Third Ventricle
songbird
songbirds
Dorsomedial Hypothalamic Nucleus
hypothalamus
Hypothalamus
pineal body
Pineal Gland
migratory behavior
Cues
Ependymoglial Cells
Telencephalon
Neurosecretory Systems
Circadian Clocks
Suprachiasmatic Nucleus
Birds
Breeding
Ecosystem
physiology

Keywords

  • circadian
  • circannual
  • neuroendocrine
  • photoperiodism
  • SCN

Cite this

Neural control of daily and seasonal timing of songbird migration. / Stevenson, Tyler J; Kumar, Vinod.

In: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, Vol. 203, No. 6-7, 07.2017, p. 399–409.

Research output: Contribution to journalArticle

@article{f6a7613578b24866a6908f10666c166b,
title = "Neural control of daily and seasonal timing of songbird migration",
abstract = "Bird migration is one of most salient annual events in nature. It involves predictable seasonal movements between breeding and non-breeding habitats. Both circadian and circannual clocks are entrained by photoperiodic cues and time daily and seasonal changes in migratory physiology and behavior. This mini-review provides an update on daily and seasonal rhythms of migratory behavior, and examines the neuroendocrine and molecular pathways involved in the timing of migration in songbirds. Recent findings have identified key neural substrates, and suggest the involvement of multiple neuroendocrine regulatory systems in controlling seasonal states in migrants. We propose that four distinct neural substrates are involved in the timing of migration and include (1) pineal gland and suprachiasmatic nucleus (mSCN); (2) a cluster of hypothalamic nuclei, the mediobasal hypothalamus (MBH); (3) dorsomedial hypothalamic nucleus (DMH); and (4) tanycytes along ependymal layer of the 3rd ventricle (3V). Cluster N, a nucleus in the telencephalon involved in the integration of geomagnetic cues, likely maintains functional connectivity with brain regions involved in timing songbird migration. These nuclei form an interconnected network that coordinates daily timing (pineal gland/mSCN), annual photoperiodic response (MBH, 3V), energetic state (MBH, DMH, 3V), and magnetic compass information (i.e., cluster N) for migration in songbirds.",
keywords = "circadian, circannual, neuroendocrine, photoperiodism, SCN",
author = "Stevenson, {Tyler J} and Vinod Kumar",
note = "The Science and Engineering Research Board (SERB) and Department of Biotechnology, Govt. of India have generously provided to VK the funding to carryout research on migration in buntings included in this review paper. TJS was funded by an International Exchange Programme from the Royal Society of Edinburgh.",
year = "2017",
month = "7",
doi = "10.1007/s00359-017-1193-5",
language = "English",
volume = "203",
pages = "399–409",
journal = "Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology",
issn = "0340-7594",
publisher = "Springer Verlag",
number = "6-7",

}

TY - JOUR

T1 - Neural control of daily and seasonal timing of songbird migration

AU - Stevenson, Tyler J

AU - Kumar, Vinod

N1 - The Science and Engineering Research Board (SERB) and Department of Biotechnology, Govt. of India have generously provided to VK the funding to carryout research on migration in buntings included in this review paper. TJS was funded by an International Exchange Programme from the Royal Society of Edinburgh.

PY - 2017/7

Y1 - 2017/7

N2 - Bird migration is one of most salient annual events in nature. It involves predictable seasonal movements between breeding and non-breeding habitats. Both circadian and circannual clocks are entrained by photoperiodic cues and time daily and seasonal changes in migratory physiology and behavior. This mini-review provides an update on daily and seasonal rhythms of migratory behavior, and examines the neuroendocrine and molecular pathways involved in the timing of migration in songbirds. Recent findings have identified key neural substrates, and suggest the involvement of multiple neuroendocrine regulatory systems in controlling seasonal states in migrants. We propose that four distinct neural substrates are involved in the timing of migration and include (1) pineal gland and suprachiasmatic nucleus (mSCN); (2) a cluster of hypothalamic nuclei, the mediobasal hypothalamus (MBH); (3) dorsomedial hypothalamic nucleus (DMH); and (4) tanycytes along ependymal layer of the 3rd ventricle (3V). Cluster N, a nucleus in the telencephalon involved in the integration of geomagnetic cues, likely maintains functional connectivity with brain regions involved in timing songbird migration. These nuclei form an interconnected network that coordinates daily timing (pineal gland/mSCN), annual photoperiodic response (MBH, 3V), energetic state (MBH, DMH, 3V), and magnetic compass information (i.e., cluster N) for migration in songbirds.

AB - Bird migration is one of most salient annual events in nature. It involves predictable seasonal movements between breeding and non-breeding habitats. Both circadian and circannual clocks are entrained by photoperiodic cues and time daily and seasonal changes in migratory physiology and behavior. This mini-review provides an update on daily and seasonal rhythms of migratory behavior, and examines the neuroendocrine and molecular pathways involved in the timing of migration in songbirds. Recent findings have identified key neural substrates, and suggest the involvement of multiple neuroendocrine regulatory systems in controlling seasonal states in migrants. We propose that four distinct neural substrates are involved in the timing of migration and include (1) pineal gland and suprachiasmatic nucleus (mSCN); (2) a cluster of hypothalamic nuclei, the mediobasal hypothalamus (MBH); (3) dorsomedial hypothalamic nucleus (DMH); and (4) tanycytes along ependymal layer of the 3rd ventricle (3V). Cluster N, a nucleus in the telencephalon involved in the integration of geomagnetic cues, likely maintains functional connectivity with brain regions involved in timing songbird migration. These nuclei form an interconnected network that coordinates daily timing (pineal gland/mSCN), annual photoperiodic response (MBH, 3V), energetic state (MBH, DMH, 3V), and magnetic compass information (i.e., cluster N) for migration in songbirds.

KW - circadian

KW - circannual

KW - neuroendocrine

KW - photoperiodism

KW - SCN

U2 - 10.1007/s00359-017-1193-5

DO - 10.1007/s00359-017-1193-5

M3 - Article

VL - 203

SP - 399

EP - 409

JO - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology

JF - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology

SN - 0340-7594

IS - 6-7

ER -