TY - GEN
T1 - Norm Conflict Identification using Vector Space Offsets
AU - Aires, João Paulo
AU - Monteiro, Juarez
AU - Granada, Roger
AU - Meneguzzi, Felipe
N1 - Funding Information:
The authors would like to thank CNPq and NVIDIA for funding this research.
Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/10
Y1 - 2018/10/10
N2 - Contracts formally represent agreements between parties and often involve the exchange of goods and services. In contracts, norms define the expected behaviors from parties using deontic statements, such as obligations, permissions, and prohibitions. However, norms may conflict when two or more apply to the same context but have different deontic statements, such as a permission to delay payment being present in the same contract as an obligation to pay in a fixed deadline. Contracts with conflicting norms may be invalidated in whole or in part, making conflict identification a major concern in contract writing. Conflict identification in contracts by humans is a time-consuming and error-prone task that would greatly benefit from automated aid. In order to automate such identification, we introduce an approach to identify potential conflicts between norms in contracts written in natural language that compares a latent (vector) representation of norms using an implicit offset that encodes normative conflicts. Experimental evaluation shows that our approach is substantially more accurate than the existing state of the art in an open dataset.
AB - Contracts formally represent agreements between parties and often involve the exchange of goods and services. In contracts, norms define the expected behaviors from parties using deontic statements, such as obligations, permissions, and prohibitions. However, norms may conflict when two or more apply to the same context but have different deontic statements, such as a permission to delay payment being present in the same contract as an obligation to pay in a fixed deadline. Contracts with conflicting norms may be invalidated in whole or in part, making conflict identification a major concern in contract writing. Conflict identification in contracts by humans is a time-consuming and error-prone task that would greatly benefit from automated aid. In order to automate such identification, we introduce an approach to identify potential conflicts between norms in contracts written in natural language that compares a latent (vector) representation of norms using an implicit offset that encodes normative conflicts. Experimental evaluation shows that our approach is substantially more accurate than the existing state of the art in an open dataset.
UR - http://www.scopus.com/inward/record.url?scp=85056546722&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2018.8489119
DO - 10.1109/IJCNN.2018.8489119
M3 - Published conference contribution
AN - SCOPUS:85056546722
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 International Joint Conference on Neural Networks, IJCNN 2018
Y2 - 8 July 2018 through 13 July 2018
ER -