Nutrient-hormone interaction in the ovine liver: methionine supply selectively modulates growth hormone-induced IGF-1 gene expression

A K Stubbs, N M Wheelhouse, M A Lomax, D G Hazlerigg

Research output: Contribution to journalArticle

Abstract

This study tested the hypothesis that specific amino acids are responsible for modulating the insulin-like growth factor-I (IGF-I) response to growth hormone (GH) in ovine hepatocytes. Cells were grown in media of defined amino acid composition, based on physiological concentrations (P.C.) of amino acids in sheep plasma. Relative to culture in 5 x P.C., amino acid limitation to 0.2 x P.C. had inhibitory effects on IGF-I RNA expression, peptide release and p70 S6 kinase phosphorylation (P<0.01 in each case). Limitation of methionine levels to 0.2 x P.C. against a background of 5 x P.C. for the other amino acids blocked GH-stimulated IGF-I peptide release and RNA expression, although basal expression was unaffected. In contrast, limitation of the other amino acids present in the culture medium had no effect on basal or GH-stimulated IGF-I expression. Selective methionine limitation to 0.2 x P.C. levels had no effect on cellular or secretory protein synthesis rates relative to cells grown in complete 5 x P.C. medium but did cause a partial reduction in p70 S6 kinase phosphorylation, which was also observed when medium was selectively limited for other essential amino acids. The addition of rapamycin (5 ng/ml) to cells grown in 5 x P.C. media completely abolished p70 S6 kinase phosphorylation (P<0.001), implicating mTOR in the response of S6 kinase phosphorylation to changing amino acid supply. By contrast, inclusion of rapamycin (100 ng/ml) had no effect on levels of IGF-I gene expression. These results indicate that methionine is the key limiting amino acid involved in the modulation of IGF-I expression in the ovine liver. This nutrient-hormone interaction is a highly selective phenomenon, occurring against a background of modest effects on general protein synthetic control. The partial inhibitory effects of methionine on mTOR activity are not sufficient to account for this selectivity of action.

Original languageEnglish
Number of pages7
JournalJournal of Endocrinology
Volume174
Publication statusPublished - 2002

Keywords

  • AMINO-ACID AVAILABILITY
  • MULTIPLE TRANSLATION FACTORS
  • P70 S6 KINASE
  • FACTOR-I
  • MESSENGER-RNA
  • DIFFERENTIAL REGULATION
  • NUTRITIONAL-STATUS
  • BINDING-PROTEIN
  • INSULIN
  • HEPATOCYTES

Cite this

Nutrient-hormone interaction in the ovine liver: methionine supply selectively modulates growth hormone-induced IGF-1 gene expression. / Stubbs, A K ; Wheelhouse, N M ; Lomax, M A ; Hazlerigg, D G .

In: Journal of Endocrinology, Vol. 174, 2002.

Research output: Contribution to journalArticle

@article{05397e0842c14ad7a831307e08e34771,
title = "Nutrient-hormone interaction in the ovine liver: methionine supply selectively modulates growth hormone-induced IGF-1 gene expression",
abstract = "This study tested the hypothesis that specific amino acids are responsible for modulating the insulin-like growth factor-I (IGF-I) response to growth hormone (GH) in ovine hepatocytes. Cells were grown in media of defined amino acid composition, based on physiological concentrations (P.C.) of amino acids in sheep plasma. Relative to culture in 5 x P.C., amino acid limitation to 0.2 x P.C. had inhibitory effects on IGF-I RNA expression, peptide release and p70 S6 kinase phosphorylation (P<0.01 in each case). Limitation of methionine levels to 0.2 x P.C. against a background of 5 x P.C. for the other amino acids blocked GH-stimulated IGF-I peptide release and RNA expression, although basal expression was unaffected. In contrast, limitation of the other amino acids present in the culture medium had no effect on basal or GH-stimulated IGF-I expression. Selective methionine limitation to 0.2 x P.C. levels had no effect on cellular or secretory protein synthesis rates relative to cells grown in complete 5 x P.C. medium but did cause a partial reduction in p70 S6 kinase phosphorylation, which was also observed when medium was selectively limited for other essential amino acids. The addition of rapamycin (5 ng/ml) to cells grown in 5 x P.C. media completely abolished p70 S6 kinase phosphorylation (P<0.001), implicating mTOR in the response of S6 kinase phosphorylation to changing amino acid supply. By contrast, inclusion of rapamycin (100 ng/ml) had no effect on levels of IGF-I gene expression. These results indicate that methionine is the key limiting amino acid involved in the modulation of IGF-I expression in the ovine liver. This nutrient-hormone interaction is a highly selective phenomenon, occurring against a background of modest effects on general protein synthetic control. The partial inhibitory effects of methionine on mTOR activity are not sufficient to account for this selectivity of action.",
keywords = "AMINO-ACID AVAILABILITY, MULTIPLE TRANSLATION FACTORS, P70 S6 KINASE, FACTOR-I, MESSENGER-RNA, DIFFERENTIAL REGULATION, NUTRITIONAL-STATUS, BINDING-PROTEIN, INSULIN, HEPATOCYTES",
author = "Stubbs, {A K} and Wheelhouse, {N M} and Lomax, {M A} and Hazlerigg, {D G}",
year = "2002",
language = "English",
volume = "174",
journal = "Journal of Endocrinology",
issn = "0022-0795",
publisher = "Society for Endocrinology",

}

TY - JOUR

T1 - Nutrient-hormone interaction in the ovine liver: methionine supply selectively modulates growth hormone-induced IGF-1 gene expression

AU - Stubbs, A K

AU - Wheelhouse, N M

AU - Lomax, M A

AU - Hazlerigg, D G

PY - 2002

Y1 - 2002

N2 - This study tested the hypothesis that specific amino acids are responsible for modulating the insulin-like growth factor-I (IGF-I) response to growth hormone (GH) in ovine hepatocytes. Cells were grown in media of defined amino acid composition, based on physiological concentrations (P.C.) of amino acids in sheep plasma. Relative to culture in 5 x P.C., amino acid limitation to 0.2 x P.C. had inhibitory effects on IGF-I RNA expression, peptide release and p70 S6 kinase phosphorylation (P<0.01 in each case). Limitation of methionine levels to 0.2 x P.C. against a background of 5 x P.C. for the other amino acids blocked GH-stimulated IGF-I peptide release and RNA expression, although basal expression was unaffected. In contrast, limitation of the other amino acids present in the culture medium had no effect on basal or GH-stimulated IGF-I expression. Selective methionine limitation to 0.2 x P.C. levels had no effect on cellular or secretory protein synthesis rates relative to cells grown in complete 5 x P.C. medium but did cause a partial reduction in p70 S6 kinase phosphorylation, which was also observed when medium was selectively limited for other essential amino acids. The addition of rapamycin (5 ng/ml) to cells grown in 5 x P.C. media completely abolished p70 S6 kinase phosphorylation (P<0.001), implicating mTOR in the response of S6 kinase phosphorylation to changing amino acid supply. By contrast, inclusion of rapamycin (100 ng/ml) had no effect on levels of IGF-I gene expression. These results indicate that methionine is the key limiting amino acid involved in the modulation of IGF-I expression in the ovine liver. This nutrient-hormone interaction is a highly selective phenomenon, occurring against a background of modest effects on general protein synthetic control. The partial inhibitory effects of methionine on mTOR activity are not sufficient to account for this selectivity of action.

AB - This study tested the hypothesis that specific amino acids are responsible for modulating the insulin-like growth factor-I (IGF-I) response to growth hormone (GH) in ovine hepatocytes. Cells were grown in media of defined amino acid composition, based on physiological concentrations (P.C.) of amino acids in sheep plasma. Relative to culture in 5 x P.C., amino acid limitation to 0.2 x P.C. had inhibitory effects on IGF-I RNA expression, peptide release and p70 S6 kinase phosphorylation (P<0.01 in each case). Limitation of methionine levels to 0.2 x P.C. against a background of 5 x P.C. for the other amino acids blocked GH-stimulated IGF-I peptide release and RNA expression, although basal expression was unaffected. In contrast, limitation of the other amino acids present in the culture medium had no effect on basal or GH-stimulated IGF-I expression. Selective methionine limitation to 0.2 x P.C. levels had no effect on cellular or secretory protein synthesis rates relative to cells grown in complete 5 x P.C. medium but did cause a partial reduction in p70 S6 kinase phosphorylation, which was also observed when medium was selectively limited for other essential amino acids. The addition of rapamycin (5 ng/ml) to cells grown in 5 x P.C. media completely abolished p70 S6 kinase phosphorylation (P<0.001), implicating mTOR in the response of S6 kinase phosphorylation to changing amino acid supply. By contrast, inclusion of rapamycin (100 ng/ml) had no effect on levels of IGF-I gene expression. These results indicate that methionine is the key limiting amino acid involved in the modulation of IGF-I expression in the ovine liver. This nutrient-hormone interaction is a highly selective phenomenon, occurring against a background of modest effects on general protein synthetic control. The partial inhibitory effects of methionine on mTOR activity are not sufficient to account for this selectivity of action.

KW - AMINO-ACID AVAILABILITY

KW - MULTIPLE TRANSLATION FACTORS

KW - P70 S6 KINASE

KW - FACTOR-I

KW - MESSENGER-RNA

KW - DIFFERENTIAL REGULATION

KW - NUTRITIONAL-STATUS

KW - BINDING-PROTEIN

KW - INSULIN

KW - HEPATOCYTES

M3 - Article

VL - 174

JO - Journal of Endocrinology

JF - Journal of Endocrinology

SN - 0022-0795

ER -