On a conjecture of G. Malle and G. Navarro on Nilpotent Blocks

Research output: Contribution to journalArticle

Abstract

In a recent article, G. Malle and G. Navarro conjectured that the p-blocks of a finite group all of whose height 0 characters have the same degree are exactly the nilpotent blocks defined by M. Brou´e and L. Puig. In this paper, we check that this conjecture holds for spin-blocks of the covering group 2.An of the alternating group An, thereby solving a case excluded from the study of quasi-simple groups by Malle and Navarro.
Original languageEnglish
Article numberP217
Number of pages14
JournalElectronic Journal of Combinatorics
Volume18
Issue number1
Publication statusPublished - 7 Nov 2011

Fingerprint

Alternating group
Simple group
Finite Group
Covering
Character

Keywords

  • representation theory
  • symmetric group
  • covering groups
  • bar-partitions

Cite this

On a conjecture of G. Malle and G. Navarro on Nilpotent Blocks. / Gramain, Jean-Baptiste.

In: Electronic Journal of Combinatorics, Vol. 18, No. 1, P217, 07.11.2011.

Research output: Contribution to journalArticle

@article{41309a7f9c3540f2aa6e6b6c74ab0027,
title = "On a conjecture of G. Malle and G. Navarro on Nilpotent Blocks",
abstract = "In a recent article, G. Malle and G. Navarro conjectured that the p-blocks of a finite group all of whose height 0 characters have the same degree are exactly the nilpotent blocks defined by M. Brou´e and L. Puig. In this paper, we check that this conjecture holds for spin-blocks of the covering group 2.An of the alternating group An, thereby solving a case excluded from the study of quasi-simple groups by Malle and Navarro.",
keywords = "representation theory, symmetric group, covering groups, bar-partitions",
author = "Jean-Baptiste Gramain",
year = "2011",
month = "11",
day = "7",
language = "English",
volume = "18",
journal = "Electronic Journal of Combinatorics",
issn = "1077-8926",
publisher = "Electronic Journal of Combinatorics",
number = "1",

}

TY - JOUR

T1 - On a conjecture of G. Malle and G. Navarro on Nilpotent Blocks

AU - Gramain, Jean-Baptiste

PY - 2011/11/7

Y1 - 2011/11/7

N2 - In a recent article, G. Malle and G. Navarro conjectured that the p-blocks of a finite group all of whose height 0 characters have the same degree are exactly the nilpotent blocks defined by M. Brou´e and L. Puig. In this paper, we check that this conjecture holds for spin-blocks of the covering group 2.An of the alternating group An, thereby solving a case excluded from the study of quasi-simple groups by Malle and Navarro.

AB - In a recent article, G. Malle and G. Navarro conjectured that the p-blocks of a finite group all of whose height 0 characters have the same degree are exactly the nilpotent blocks defined by M. Brou´e and L. Puig. In this paper, we check that this conjecture holds for spin-blocks of the covering group 2.An of the alternating group An, thereby solving a case excluded from the study of quasi-simple groups by Malle and Navarro.

KW - representation theory

KW - symmetric group

KW - covering groups

KW - bar-partitions

M3 - Article

VL - 18

JO - Electronic Journal of Combinatorics

JF - Electronic Journal of Combinatorics

SN - 1077-8926

IS - 1

M1 - P217

ER -