Organic matter remineralization in marine sediments: A Pan-Arctic synthesis

Solveig Bourgeois (Corresponding Author), Philippe Archambault, Ursula Witte

Research output: Contribution to journalArticle

8 Citations (Scopus)
4 Downloads (Pure)

Abstract

Climate change in the Arctic is ongoing and causes drastic modification on the ecosystem functioning. In soft-bottom environments, organic matter remineralization is considered an important ecosystem function. Here we provide a large scale assessment of the current knowledge on the benthic organic matter remineralization and its potential response to climate change. Sediment oxygen demand (SOD) values (n = 1154), measured throughout the Arctic, were gathered from 30 publications and 16 databases and nutrient flux values, available in a far lesser extent (n < 80), were also compiled. Generalized additive models were used to estimate the influence of explanatory variables on benthic oxygen fluxes and for interpolating SOD to the whole Arctic region. This first pan-Arctic review of the distributions of SOD showed that oxygen fluxes strongly depended on water depth, i.e. followed the general trend observed for other regions, and also on the availability of labile organic matter. The continental shelves (representing ~50% of Arctic Ocean's total area) were characterized by the highest SOD values (10.5 ± 7.9 mmolO2 m-2 d-1) and differences among shelves were observed; SOD values in inflow, interior and outflow shelves were 11.8 ± 8.0, 6.2 ± 5.6 and 3.9 ± 3.5 mmolO2 m-2 d-1, respectively. Moreover, seasonal variation in SOD changed significantly among areas. The interpolation based on the best-fitted model showed high respiration in the inflow and interior shelves. In the inflow shelves, characterized by productive waters, benthic activities replenish bottom water with nutrients which may augment primary productivity, whereas sediments from the interior shelves, e.g. under the direct influence of the Mackenzie River, consume nutrients.
Original languageEnglish
Pages (from-to)190-213
Number of pages24
JournalGlobal Biogeochemical Cycles
Volume31
Issue number1
Early online date5 Jan 2017
DOIs
Publication statusPublished - Jan 2017

Fingerprint

remineralization
Biological materials
marine sediment
Sediments
organic matter
oxygen
sediment
Nutrients
inflow
Fluxes
Climate change
Ecosystems
Water
nutrient
soft-bottom environment
Oxygen
climate change
ecosystem function
Interpolation
bottom water

Keywords

  • sediment oxygen demand
  • nutrient fluxes
  • polar region
  • food supply
  • water depth

Cite this

Organic matter remineralization in marine sediments : A Pan-Arctic synthesis. / Bourgeois, Solveig (Corresponding Author); Archambault, Philippe; Witte, Ursula.

In: Global Biogeochemical Cycles, Vol. 31, No. 1, 01.2017, p. 190-213.

Research output: Contribution to journalArticle

Bourgeois, Solveig ; Archambault, Philippe ; Witte, Ursula. / Organic matter remineralization in marine sediments : A Pan-Arctic synthesis. In: Global Biogeochemical Cycles. 2017 ; Vol. 31, No. 1. pp. 190-213.
@article{c3c06f4314184e008cd19a55c65696f3,
title = "Organic matter remineralization in marine sediments: A Pan-Arctic synthesis",
abstract = "Climate change in the Arctic is ongoing and causes drastic modification on the ecosystem functioning. In soft-bottom environments, organic matter remineralization is considered an important ecosystem function. Here we provide a large scale assessment of the current knowledge on the benthic organic matter remineralization and its potential response to climate change. Sediment oxygen demand (SOD) values (n = 1154), measured throughout the Arctic, were gathered from 30 publications and 16 databases and nutrient flux values, available in a far lesser extent (n < 80), were also compiled. Generalized additive models were used to estimate the influence of explanatory variables on benthic oxygen fluxes and for interpolating SOD to the whole Arctic region. This first pan-Arctic review of the distributions of SOD showed that oxygen fluxes strongly depended on water depth, i.e. followed the general trend observed for other regions, and also on the availability of labile organic matter. The continental shelves (representing ~50{\%} of Arctic Ocean's total area) were characterized by the highest SOD values (10.5 ± 7.9 mmolO2 m-2 d-1) and differences among shelves were observed; SOD values in inflow, interior and outflow shelves were 11.8 ± 8.0, 6.2 ± 5.6 and 3.9 ± 3.5 mmolO2 m-2 d-1, respectively. Moreover, seasonal variation in SOD changed significantly among areas. The interpolation based on the best-fitted model showed high respiration in the inflow and interior shelves. In the inflow shelves, characterized by productive waters, benthic activities replenish bottom water with nutrients which may augment primary productivity, whereas sediments from the interior shelves, e.g. under the direct influence of the Mackenzie River, consume nutrients.",
keywords = "sediment oxygen demand, nutrient fluxes, polar region, food supply, water depth",
author = "Solveig Bourgeois and Philippe Archambault and Ursula Witte",
note = "Natural Environment Research Council (GrantNumber(s): NE/J023094/1; Grant recipient(s): Ursula Witte) ArcticNet (GrantNumber(s): Hotspot biodiversity project; Grant recipient(s): Philippe Archambault)",
year = "2017",
month = "1",
doi = "10.1002/2016GB005378",
language = "English",
volume = "31",
pages = "190--213",
journal = "Global Biogeochemical Cycles",
issn = "0886-6236",
publisher = "American Geophysical Union",
number = "1",

}

TY - JOUR

T1 - Organic matter remineralization in marine sediments

T2 - A Pan-Arctic synthesis

AU - Bourgeois, Solveig

AU - Archambault, Philippe

AU - Witte, Ursula

N1 - Natural Environment Research Council (GrantNumber(s): NE/J023094/1; Grant recipient(s): Ursula Witte) ArcticNet (GrantNumber(s): Hotspot biodiversity project; Grant recipient(s): Philippe Archambault)

PY - 2017/1

Y1 - 2017/1

N2 - Climate change in the Arctic is ongoing and causes drastic modification on the ecosystem functioning. In soft-bottom environments, organic matter remineralization is considered an important ecosystem function. Here we provide a large scale assessment of the current knowledge on the benthic organic matter remineralization and its potential response to climate change. Sediment oxygen demand (SOD) values (n = 1154), measured throughout the Arctic, were gathered from 30 publications and 16 databases and nutrient flux values, available in a far lesser extent (n < 80), were also compiled. Generalized additive models were used to estimate the influence of explanatory variables on benthic oxygen fluxes and for interpolating SOD to the whole Arctic region. This first pan-Arctic review of the distributions of SOD showed that oxygen fluxes strongly depended on water depth, i.e. followed the general trend observed for other regions, and also on the availability of labile organic matter. The continental shelves (representing ~50% of Arctic Ocean's total area) were characterized by the highest SOD values (10.5 ± 7.9 mmolO2 m-2 d-1) and differences among shelves were observed; SOD values in inflow, interior and outflow shelves were 11.8 ± 8.0, 6.2 ± 5.6 and 3.9 ± 3.5 mmolO2 m-2 d-1, respectively. Moreover, seasonal variation in SOD changed significantly among areas. The interpolation based on the best-fitted model showed high respiration in the inflow and interior shelves. In the inflow shelves, characterized by productive waters, benthic activities replenish bottom water with nutrients which may augment primary productivity, whereas sediments from the interior shelves, e.g. under the direct influence of the Mackenzie River, consume nutrients.

AB - Climate change in the Arctic is ongoing and causes drastic modification on the ecosystem functioning. In soft-bottom environments, organic matter remineralization is considered an important ecosystem function. Here we provide a large scale assessment of the current knowledge on the benthic organic matter remineralization and its potential response to climate change. Sediment oxygen demand (SOD) values (n = 1154), measured throughout the Arctic, were gathered from 30 publications and 16 databases and nutrient flux values, available in a far lesser extent (n < 80), were also compiled. Generalized additive models were used to estimate the influence of explanatory variables on benthic oxygen fluxes and for interpolating SOD to the whole Arctic region. This first pan-Arctic review of the distributions of SOD showed that oxygen fluxes strongly depended on water depth, i.e. followed the general trend observed for other regions, and also on the availability of labile organic matter. The continental shelves (representing ~50% of Arctic Ocean's total area) were characterized by the highest SOD values (10.5 ± 7.9 mmolO2 m-2 d-1) and differences among shelves were observed; SOD values in inflow, interior and outflow shelves were 11.8 ± 8.0, 6.2 ± 5.6 and 3.9 ± 3.5 mmolO2 m-2 d-1, respectively. Moreover, seasonal variation in SOD changed significantly among areas. The interpolation based on the best-fitted model showed high respiration in the inflow and interior shelves. In the inflow shelves, characterized by productive waters, benthic activities replenish bottom water with nutrients which may augment primary productivity, whereas sediments from the interior shelves, e.g. under the direct influence of the Mackenzie River, consume nutrients.

KW - sediment oxygen demand

KW - nutrient fluxes

KW - polar region

KW - food supply

KW - water depth

U2 - 10.1002/2016GB005378

DO - 10.1002/2016GB005378

M3 - Article

VL - 31

SP - 190

EP - 213

JO - Global Biogeochemical Cycles

JF - Global Biogeochemical Cycles

SN - 0886-6236

IS - 1

ER -