### Abstract

Original language | English |
---|---|

Article number | 012203 |

Journal | Physical Review. E, Statistical, Nonlinear and Soft Matter Physics |

Volume | 97 |

Issue number | 1 |

DOIs | |

Publication status | Published - 10 Jan 2018 |

### Fingerprint

### Keywords

- nlin.CD
- cond-mat.stat-mech

### Cite this

*Physical Review. E, Statistical, Nonlinear and Soft Matter Physics*,

*97*(1), [012203]. https://doi.org/10.1103/PhysRevE.97.012203

**Origin and scaling of chaos in weakly coupled phase oscillators.** / Carlu, Mallory; Ginelli, Francesco; Politi, Antonio.

Research output: Contribution to journal › Article

*Physical Review. E, Statistical, Nonlinear and Soft Matter Physics*, vol. 97, no. 1, 012203. https://doi.org/10.1103/PhysRevE.97.012203

}

TY - JOUR

T1 - Origin and scaling of chaos in weakly coupled phase oscillators

AU - Carlu, Mallory

AU - Ginelli, Francesco

AU - Politi, Antonio

N1 - Acknowledgments AP wishes to acknowledge D. Paz ́o for a preliminary analysis. All the authors thank H. Chat ́e for useful discussions. We acknowledge support from EU Marie Curie ITN grant n. 64256 (COSMOS).

PY - 2018/1/10

Y1 - 2018/1/10

N2 - We discuss the behavior of the largest Lyapunov exponent $\lambda$ in the incoherent phase of large ensembles of heterogeneous, globally-coupled, phase oscillators. We show that the scaling with the system size $N$ depends on the details of the spacing distribution of the oscillator frequencies. For sufficiently regular distributions $\lambda \sim 1/N$, while for strong fluctuations of the frequency spacing, $\lambda \sim \ln N/N$ (the standard setup of independent identically distributed variables belongs to the latter class). In spite of the coupling being small for large $N$, the development of a rigorous perturbative theory is not obvious. In fact, our analysis relies on a combination of various types of numerical simulations together with approximate analytical arguments, based on a suitable stochastic approximation for the tangent space evolution. In fact, the very reason for $\lambda$ being strictly larger than zero is the presence of finite size fluctuations. We trace back the origin of the logarithmic correction to a weak synchronization between tangent and phase space dynamics.

AB - We discuss the behavior of the largest Lyapunov exponent $\lambda$ in the incoherent phase of large ensembles of heterogeneous, globally-coupled, phase oscillators. We show that the scaling with the system size $N$ depends on the details of the spacing distribution of the oscillator frequencies. For sufficiently regular distributions $\lambda \sim 1/N$, while for strong fluctuations of the frequency spacing, $\lambda \sim \ln N/N$ (the standard setup of independent identically distributed variables belongs to the latter class). In spite of the coupling being small for large $N$, the development of a rigorous perturbative theory is not obvious. In fact, our analysis relies on a combination of various types of numerical simulations together with approximate analytical arguments, based on a suitable stochastic approximation for the tangent space evolution. In fact, the very reason for $\lambda$ being strictly larger than zero is the presence of finite size fluctuations. We trace back the origin of the logarithmic correction to a weak synchronization between tangent and phase space dynamics.

KW - nlin.CD

KW - cond-mat.stat-mech

U2 - 10.1103/PhysRevE.97.012203

DO - 10.1103/PhysRevE.97.012203

M3 - Article

VL - 97

JO - Physical Review. E, Statistical, Nonlinear and Soft Matter Physics

JF - Physical Review. E, Statistical, Nonlinear and Soft Matter Physics

SN - 1539-3755

IS - 1

M1 - 012203

ER -