TY - JOUR
T1 - Perforated tunnel exit regions and micro-pressure waves
T2 - geometrical influence
AU - Wang, Honglin
AU - Vardy, Alan E.
AU - Pokrajac, Dubravka
N1 - ACKNOWLEDGEMENTS
The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant No. U1334201 and (iii) UK Engineering and Physical Sciences Research Council (Grant No. EP/G069441/1).
PY - 2016/6
Y1 - 2016/6
N2 - The effectiveness of long, perforated exit regions in reducing the radiation of micro-pressure waves (MPWs) from railway tunnels is assessed. Such disturbances always occur, but their amplitudes are usually small. For the particular case of high speed trains, they can reach levels that would cause annoyance in the absence of suitable counter-measures. This risk is especially large in the case of long tunnels. The general behaviour of wave reflection/transmission/radiation at a perforated exit region has been explored in previous papers that have (i) quantified the dependence on characteristics of the incident wavefront reaching the exit region from further upstream in the tunnel and (ii) validated the numerical methodology in a searching manner). Some notable differences have been found in comparison with criteria that have long been known for unperforated exit regions. In particular, the resulting MPW amplitudes depend upon the amplitudes of incident wavefronts as well as upon their steepnesses. The present paper summarises these outcomes and uses the methodology to explore issues of importance in practical design, namely the dependence of the effectiveness of perforated exit regions on their length and cross-sectional area. Once again, differences are found from behaviour of unperforated regions.
AB - The effectiveness of long, perforated exit regions in reducing the radiation of micro-pressure waves (MPWs) from railway tunnels is assessed. Such disturbances always occur, but their amplitudes are usually small. For the particular case of high speed trains, they can reach levels that would cause annoyance in the absence of suitable counter-measures. This risk is especially large in the case of long tunnels. The general behaviour of wave reflection/transmission/radiation at a perforated exit region has been explored in previous papers that have (i) quantified the dependence on characteristics of the incident wavefront reaching the exit region from further upstream in the tunnel and (ii) validated the numerical methodology in a searching manner). Some notable differences have been found in comparison with criteria that have long been known for unperforated exit regions. In particular, the resulting MPW amplitudes depend upon the amplitudes of incident wavefronts as well as upon their steepnesses. The present paper summarises these outcomes and uses the methodology to explore issues of importance in practical design, namely the dependence of the effectiveness of perforated exit regions on their length and cross-sectional area. Once again, differences are found from behaviour of unperforated regions.
KW - computational mechanics
KW - fluid mechanics
KW - noise
UR - http://www.icevirtuallibrary.com/toc/jencm/current
U2 - 10.1680/jencm.15.00026
DO - 10.1680/jencm.15.00026
M3 - Article
VL - 169
SP - 70
EP - 85
JO - Proceedings of the ICE - Engineering and Computational Mechanics
JF - Proceedings of the ICE - Engineering and Computational Mechanics
SN - 1755-0777
IS - 2
ER -