Abstract
The reaction of DL-Proline on O-2-annealed (stoichiometric) and O-defected (sub-stoichiometric) TiO2 (001) single-crystal surfaces has been investigated. This is of significance in trying to understand the concept of how biomolecules interact with the surfaces of biomedical implants (molecular recognition). On an O-2-annealed TiO2 surface, proline is found to largely adsorb then desorb intact at approximate to350 K. DFT (B3LYP) calculations of proline bound to a Ti(OH)(4) Cluster suggest a binding through the carboxylate functional group rather than through the NH group of the ring. In contrast, proline reaction was considerably different on the O-defected surface. First, proline was further stabilized, evidenced by a shift of its desorption temperature (during temperature-programmed desorption) to approximate to530 K. Along with proline desorption, two distinctive sets of reaction processes occurred at 530 and 630 K, respectively. The first pathway (alpha) at 530 K shows desorption of large amounts of m/e 55 (attributed to 1-azetine) and m/e 42 (attributed to ketene). At still higher temperature, 630 K, a pathway (beta) dominated by the appearance of low masses, mainly m/e 28, 27, and 26, is seen. These masses are tentatively attributed to desorption of HCN, ethylene, and/or acetylene as they represent the logical further decomposition of the different fragments of proline.
Original language | English |
---|---|
Pages (from-to) | 7540-7546 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 20 |
Issue number | 18 |
DOIs | |
Publication status | Published - 31 Aug 2004 |
Keywords
- gas-phase
- amino acids
- infrared-spectroscopy
- metal ions
- adsorption
- glycine
- interface
- 1-azetine
- oxide
- 2-azabutadiene