Abstract
Candida albicans is an opportunistic fungal pathogen responsible for superficial and life threatening infections in humans. During mucosal infection, C. albicans undergoes a morphological transition from yeast to invasive filamentous hyphae that secrete Candidalysin, a 31 amino acid peptide toxin required for virulence. Candidalysin damages epithelial cell plasma membranes and stimulates the activating protein-1 (AP-1) transcription factor c-Fos (via p38- MAPK) and the MAPK phosphatase MKP1 (via ERK1/2- MAPK), which trigger and regulate pro44
inflammatory cytokine responses, respectively. The Candidalysin toxin resides as a discrete cryptic sequence within a larger 271 amino acid parental pre-pro-protein, Ece1p. Here we demonstrate that kexin-like proteinases, but not secreted aspartyl proteinases, initiate a two47 step post-translational processing of Ece1p to produce Candidalysin. Kex2p-mediated proteolysis of Ece1p after Arg61 and Arg93, but not after other processing sites within Ece1p, is required to generate immature Candidalysin from Ece1p, followed by Kex1p-mediated removal of a carboxyl arginine residue to generate mature Candidalysin. C. albicans strains harbouring mutations of Arg61 and/or Arg93 did not secrete Candidalysin, were unable to induce epithelial damage and inflammatory responses in vitro, and showed attenuated virulence in vivo in a murine model of oropharyngeal candidiasis. These observations identify enzymatic processing of C. albicans Ece1p by kexin-like proteinases as crucial steps required for Candidalysin production and fungal pathogenicity.
inflammatory cytokine responses, respectively. The Candidalysin toxin resides as a discrete cryptic sequence within a larger 271 amino acid parental pre-pro-protein, Ece1p. Here we demonstrate that kexin-like proteinases, but not secreted aspartyl proteinases, initiate a two47 step post-translational processing of Ece1p to produce Candidalysin. Kex2p-mediated proteolysis of Ece1p after Arg61 and Arg93, but not after other processing sites within Ece1p, is required to generate immature Candidalysin from Ece1p, followed by Kex1p-mediated removal of a carboxyl arginine residue to generate mature Candidalysin. C. albicans strains harbouring mutations of Arg61 and/or Arg93 did not secrete Candidalysin, were unable to induce epithelial damage and inflammatory responses in vitro, and showed attenuated virulence in vivo in a murine model of oropharyngeal candidiasis. These observations identify enzymatic processing of C. albicans Ece1p by kexin-like proteinases as crucial steps required for Candidalysin production and fungal pathogenicity.
Original language | English |
---|---|
Article number | e02178-17 |
Journal | mBio |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 23 Jan 2018 |
Keywords
- candida albicans
- candidalysin
- fungal infection
- kexin
- mucosal immunity