Pure injectives and the spectrum of the cohomology ring of a finite group

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

For a finite group G and a field k of prime characteristic, we study certain pure injective kG-modules in terms of the spectrum of the group cohomology ring H* (G, k). For instance, we construct a map from the projective variety Proj (H* (G, k)) to the Ziegler spectrum of indecomposable pure injective kG-modules. We identify the module corresponding to a generic point for a component of the variety; it is generic in the sense of Crawley-Boevey and closely related to a certain Rickard idempotent module. We include also a complete classification of all kG-modules which arise as a direct summand of a (possibly infinite) product of syzygies of the trivial module k.

Original languageEnglish
Pages (from-to)23-51
Number of pages28
JournalJournal für die reine und angewandte Mathematik
Volume542
DOIs
Publication statusPublished - 2002

Keywords

  • INFINITELY GENERATED MODULES
  • PHANTOM MAPS
  • CATEGORY
  • COMPLEXITY
  • VARIETIES

Cite this

Pure injectives and the spectrum of the cohomology ring of a finite group. / Benson, David John; Krause, H.

In: Journal für die reine und angewandte Mathematik, Vol. 542, 2002, p. 23-51.

Research output: Contribution to journalArticle

@article{5822473a82114daea3a641467a621dc0,
title = "Pure injectives and the spectrum of the cohomology ring of a finite group",
abstract = "For a finite group G and a field k of prime characteristic, we study certain pure injective kG-modules in terms of the spectrum of the group cohomology ring H* (G, k). For instance, we construct a map from the projective variety Proj (H* (G, k)) to the Ziegler spectrum of indecomposable pure injective kG-modules. We identify the module corresponding to a generic point for a component of the variety; it is generic in the sense of Crawley-Boevey and closely related to a certain Rickard idempotent module. We include also a complete classification of all kG-modules which arise as a direct summand of a (possibly infinite) product of syzygies of the trivial module k.",
keywords = "INFINITELY GENERATED MODULES, PHANTOM MAPS, CATEGORY, COMPLEXITY, VARIETIES",
author = "Benson, {David John} and H. Krause",
year = "2002",
doi = "10.1515/crll.2002.008",
language = "English",
volume = "542",
pages = "23--51",
journal = "Journal f{\"u}r die reine und angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH",

}

TY - JOUR

T1 - Pure injectives and the spectrum of the cohomology ring of a finite group

AU - Benson, David John

AU - Krause, H.

PY - 2002

Y1 - 2002

N2 - For a finite group G and a field k of prime characteristic, we study certain pure injective kG-modules in terms of the spectrum of the group cohomology ring H* (G, k). For instance, we construct a map from the projective variety Proj (H* (G, k)) to the Ziegler spectrum of indecomposable pure injective kG-modules. We identify the module corresponding to a generic point for a component of the variety; it is generic in the sense of Crawley-Boevey and closely related to a certain Rickard idempotent module. We include also a complete classification of all kG-modules which arise as a direct summand of a (possibly infinite) product of syzygies of the trivial module k.

AB - For a finite group G and a field k of prime characteristic, we study certain pure injective kG-modules in terms of the spectrum of the group cohomology ring H* (G, k). For instance, we construct a map from the projective variety Proj (H* (G, k)) to the Ziegler spectrum of indecomposable pure injective kG-modules. We identify the module corresponding to a generic point for a component of the variety; it is generic in the sense of Crawley-Boevey and closely related to a certain Rickard idempotent module. We include also a complete classification of all kG-modules which arise as a direct summand of a (possibly infinite) product of syzygies of the trivial module k.

KW - INFINITELY GENERATED MODULES

KW - PHANTOM MAPS

KW - CATEGORY

KW - COMPLEXITY

KW - VARIETIES

U2 - 10.1515/crll.2002.008

DO - 10.1515/crll.2002.008

M3 - Article

VL - 542

SP - 23

EP - 51

JO - Journal für die reine und angewandte Mathematik

JF - Journal für die reine und angewandte Mathematik

SN - 0075-4102

ER -