Quadratic and symmetric bilinear forms on modules with unique base over a semiring

Zur Izhakian, Louis Rowen, Manfred Knebusch

Research output: Contribution to journalArticle

4 Citations (Scopus)
5 Downloads (Pure)

Abstract

We study quadratic forms on free modules with uniquebase, the situation that arises in tropical algebra, and prove the analogof Witt’s Cancelation Theorem. Also, the tensor product of anindecomposable bilinear module (U, γ) with an indecomposable quadraticmodule (V, q) is indecomposable, with the exception of one case,where two indecomposable components arise.
Original languageEnglish
Pages (from-to)773-808
Number of pages36
JournalDocumenta Mathematica
Volume21
Publication statusPublished - 31 Dec 2016

Fingerprint

Semiring
Bilinear form
Module
Cancellation
Quadratic form
Tensor Product
Exception
Algebra
Theorem

Keywords

  • Semirings
  • (semi)modules
  • bilinear forms
  • quadratic forms
  • symmetric forms
  • orthogonal decomposition

Cite this

Quadratic and symmetric bilinear forms on modules with unique base over a semiring. / Izhakian, Zur; Rowen, Louis ; Knebusch, Manfred.

In: Documenta Mathematica, Vol. 21, 31.12.2016, p. 773-808.

Research output: Contribution to journalArticle

@article{756bcf64f77d46e6bd3b481e11f4ece3,
title = "Quadratic and symmetric bilinear forms on modules with unique base over a semiring",
abstract = "We study quadratic forms on free modules with uniquebase, the situation that arises in tropical algebra, and prove the analogof Witt’s Cancelation Theorem. Also, the tensor product of anindecomposable bilinear module (U, γ) with an indecomposable quadraticmodule (V, q) is indecomposable, with the exception of one case,where two indecomposable components arise.",
keywords = "Semirings, (semi)modules, bilinear forms, quadratic forms, symmetric forms, orthogonal decomposition",
author = "Zur Izhakian and Louis Rowen and Manfred Knebusch",
year = "2016",
month = "12",
day = "31",
language = "English",
volume = "21",
pages = "773--808",
journal = "Documenta Mathematica",
issn = "1431-0635",
publisher = "Deutsche Mathematiker Vereinigung",

}

TY - JOUR

T1 - Quadratic and symmetric bilinear forms on modules with unique base over a semiring

AU - Izhakian, Zur

AU - Rowen, Louis

AU - Knebusch, Manfred

PY - 2016/12/31

Y1 - 2016/12/31

N2 - We study quadratic forms on free modules with uniquebase, the situation that arises in tropical algebra, and prove the analogof Witt’s Cancelation Theorem. Also, the tensor product of anindecomposable bilinear module (U, γ) with an indecomposable quadraticmodule (V, q) is indecomposable, with the exception of one case,where two indecomposable components arise.

AB - We study quadratic forms on free modules with uniquebase, the situation that arises in tropical algebra, and prove the analogof Witt’s Cancelation Theorem. Also, the tensor product of anindecomposable bilinear module (U, γ) with an indecomposable quadraticmodule (V, q) is indecomposable, with the exception of one case,where two indecomposable components arise.

KW - Semirings

KW - (semi)modules

KW - bilinear forms

KW - quadratic forms

KW - symmetric forms

KW - orthogonal decomposition

M3 - Article

VL - 21

SP - 773

EP - 808

JO - Documenta Mathematica

JF - Documenta Mathematica

SN - 1431-0635

ER -