TY - JOUR
T1 - Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
AU - Smith, Aaron
AU - Tetzlaff, Doerthe
AU - Kleine, Lukas
AU - Maneta, Marco
AU - Soulsby, Chris
N1 - Acknowledgements. The authors acknowledge funding from the European Research Council (grant no. GA 335910 VeWa). Contributions from CS were supported by the Leverhulme Trust through the ISO-LAND project (grant no. RPG 2018 375). Isotopic analysis was conducted by David Dubbert at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries. The authors acknowledge the University of Aberdeen IT services for the use of the high-performance computing (HPC cluster), which was used for all model runs. The authors thank the editor (Lixin Wang) and the two reviewers for their constructive comments throughout the review.
The publication of this article was funded by the Open Access Fund of the Leibniz Association.
PY - 2021/4/26
Y1 - 2021/4/26
N2 - Quantifying how vegetation mediates water partitioning at different spatial and temporal scales in complex, managed catchments is fundamental for long-term sustainable land and water management. Estimations from ecohydrological models conceptualising how vegetation regulates the interrelationships between evapotranspiration losses, catchment water storage dynamics, and recharge and runoff fluxes are needed to assess water availability for a range of ecosystem services and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation and land cover are not well understood across spatial scales, and the effects of different scales on the skill of ecohydrological models needs to be clarified. We used the tracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land use catchment in northeastern Germany to quantify water flux-storage-age interactions at four model grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensing data in the calibration. Multicriteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. In general, model sensitivity decreased and uncertainty increased with coarser model resolutions. Larger grids were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped constrain the estimation of fluxes, storage, and water ages at coarser resolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly similar. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help us understand the influence of grid resolution on the simulation of vegetation-soil interactions. This is essential in interpreting associated uncertainty in estimating land use influence on large-scale "blue" (ground and surface water) and "green" (vegetation and evaporated water) fluxes, particularly for future environmental change..
AB - Quantifying how vegetation mediates water partitioning at different spatial and temporal scales in complex, managed catchments is fundamental for long-term sustainable land and water management. Estimations from ecohydrological models conceptualising how vegetation regulates the interrelationships between evapotranspiration losses, catchment water storage dynamics, and recharge and runoff fluxes are needed to assess water availability for a range of ecosystem services and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation and land cover are not well understood across spatial scales, and the effects of different scales on the skill of ecohydrological models needs to be clarified. We used the tracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land use catchment in northeastern Germany to quantify water flux-storage-age interactions at four model grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensing data in the calibration. Multicriteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. In general, model sensitivity decreased and uncertainty increased with coarser model resolutions. Larger grids were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped constrain the estimation of fluxes, storage, and water ages at coarser resolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly similar. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help us understand the influence of grid resolution on the simulation of vegetation-soil interactions. This is essential in interpreting associated uncertainty in estimating land use influence on large-scale "blue" (ground and surface water) and "green" (vegetation and evaporated water) fluxes, particularly for future environmental change..
UR - http://www.scopus.com/inward/record.url?scp=85104981285&partnerID=8YFLogxK
U2 - 10.5194/hess-25-2239-2021
DO - 10.5194/hess-25-2239-2021
M3 - Article
AN - SCOPUS:85104981285
VL - 25
SP - 2239
EP - 2259
JO - Hydrology and Earth System Sciences
JF - Hydrology and Earth System Sciences
SN - 1027-5606
IS - 4
ER -