Abstract
Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids.
Original language | English |
---|---|
Title of host publication | 3rd International Conference on Renewable Energy Research and Applications (ICRERA 2014) |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 566-571 |
Number of pages | 6 |
ISBN (Electronic) | 9781479937950 |
ISBN (Print) | 9781479937967 |
DOIs | |
Publication status | Published - Oct 2014 |
Event | 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014 - Milwaukee, United States Duration: 19 Oct 2014 → 22 Oct 2014 |
Conference
Conference | 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014 |
---|---|
Country/Territory | United States |
City | Milwaukee |
Period | 19/10/14 → 22/10/14 |
Keywords
- DC-DC converter
- Dual active bridge (DAB) converter
- Neural network (NN) controller
- Reactive power
- Triple phase shift (TPS)