Abstract
Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.
Original language | English |
---|---|
Pages (from-to) | 382-386 |
Number of pages | 5 |
Journal | Nature |
Volume | 555 |
Issue number | 7696 |
Early online date | 28 Feb 2018 |
DOIs | |
Publication status | Published - 15 Mar 2018 |
Fingerprint
Keywords
- fungal host response
- pattern recognition receptors
Cite this
Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. / Stappers, Mark H T; Clark, Alexandra E; Aimanianda, Vishukumar; Bidula, Stefan; Reid, Delyth M; Asamaphan, Patawee; Hardison, Sarah E; Dambuza, Ivy M; Valsecchi, Isabel; Kerscher, Bernhard; Plato, Anthony; Wallace, Carol A; Yuecel, Raif; Hebecker, Betty; da Glória Teixeira Sousa, Maria; Cunha, Cristina; Liu, Yan; Feizi, Ten; Brakhage, Axel A; Kwon-Chung, Kyung J; Gow, Neil A R; Zanda, Matteo; Piras, Monica; Zanato, Chiara; Jaeger, Martin; Netea, Mihai G; van de Veerdonk, Frank L; Lacerda, João F; Campos, António; Carvalho, Agostinho; Willment, Janet A; Latgé, Jean-Paul; Brown, Gordon D.
In: Nature, Vol. 555, No. 7696, 15.03.2018, p. 382-386.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus
AU - Stappers, Mark H T
AU - Clark, Alexandra E
AU - Aimanianda, Vishukumar
AU - Bidula, Stefan
AU - Reid, Delyth M
AU - Asamaphan, Patawee
AU - Hardison, Sarah E
AU - Dambuza, Ivy M
AU - Valsecchi, Isabel
AU - Kerscher, Bernhard
AU - Plato, Anthony
AU - Wallace, Carol A
AU - Yuecel, Raif
AU - Hebecker, Betty
AU - da Glória Teixeira Sousa, Maria
AU - Cunha, Cristina
AU - Liu, Yan
AU - Feizi, Ten
AU - Brakhage, Axel A
AU - Kwon-Chung, Kyung J
AU - Gow, Neil A R
AU - Zanda, Matteo
AU - Piras, Monica
AU - Zanato, Chiara
AU - Jaeger, Martin
AU - Netea, Mihai G
AU - van de Veerdonk, Frank L
AU - Lacerda, João F
AU - Campos, António
AU - Carvalho, Agostinho
AU - Willment, Janet A
AU - Latgé, Jean-Paul
AU - Brown, Gordon D
N1 - We thank the staff of the University of Aberdeen animal facility for their support and care for our animals, C. G. Park for providing recombinant langerin, and S. Filler and R. Cramer for advice. Funding was provided by the Wellcome Trust (102705, 097377, 093378, 099197, 108430, 101873), the Medical Research Council Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1). K.J.K.-C is supported by the intramural program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health; V.A. by an ANR-DST COMASPIN grant (ANR-13-ISV3-0004); B.H. by German Science Foundation (www.dfg.de) grant no. HE 7565/1-1; J.-P.L., I.V. and V.A. by the ANR and FRM DEQ2015-331722; A.C. by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and by the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 and SFRH/BPD/96176/2013).
PY - 2018/3/15
Y1 - 2018/3/15
N2 - Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.
AB - Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.
KW - fungal host response
KW - pattern recognition receptors
U2 - 10.1038/nature25974
DO - 10.1038/nature25974
M3 - Article
VL - 555
SP - 382
EP - 386
JO - Nature
JF - Nature
SN - 0028-0836
IS - 7696
ER -