Regional variability in peatland burning at mid- to high-latitudes during the Holocene

Thomas G. Sim* (Corresponding Author), Graeme T. Swindles, Paul J Morris, Andy J. Baird, Angela V. Gallego-Sala, Yuwan Wang, Maarten Blaauw, Philip Camill, Michelle Garneau, Mark Hardiman, Julie Loisel, Minna Vӓliranta, Lysanna Anderson, Karina Apolinarska, Femke Augustijns, Liene Aurnina, Joannie Beaulne, Přemysl Bobek, Werner Borken, Nils BroothaertsQiao-Yu Cui, Marissa A. Davies, Ana Ejarque, Michelle Farrell, Ingo Feeser, Angelica Feurdean, Richard E. Fewster, Sarah A Finkelstein, Marie José Gaillard, Mariusz Galka, Liam Heffernan, Renske Hoevers, Miriam C Jones, Teemu Juselius, Edgar Karofeld, Klaus-Holger Knorr, Atte Korhola, Dmitri Kupriyanov, Malin E. Kylander, Terri Lacourse, Mariusz Lamentowicz, Mariusz Lamentowicz, Geoffrey Lemdahl, Dominika Łuców, Gabriel Magnan, Alekss Maksims, Claudia A. Mansilla, Katarzyna Marcisz, Elena Marinova, Paul J.H. Mathijssen, Dimitri Mauquoy, Yuri A. Mazei, Natalia G Mazei, Julia McCarroll, Robert D. McCulloch, Alice M. Milner, Yannick Miras, Fraser J.G. Mitchell, Elena Novenko, Nicolas Pelletier, Matthew Peros, Sanna R. Piilo, Louis-Martin Pilote, Guillaume Primeau, Damien Rius, Vincent Robin, Mylène Robitaille, Thomas P. Roland, Eleonor Ryberg, A Britta K Sannel, Karsten Schittek, Gabriel Servera-Vives, William Shotyk, Michał Słowiński, Normunds Stivrins, Ward Swinnen, Gareth Thompson, Alexei Tiunov, Andrey N. Tsyganov, Eeva-Stiina Tuittila, Gert Verstraeten, Tuomo Wallenius, Julia Webb, Debra Willard, Zicheng Yu, Claudio Zaccone, Hui Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
5 Downloads (Pure)

Abstract

Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial
timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region.
Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (~9 to 6 cal. ka BP) were associated with greater peatland burning in North America’s Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower
susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires.
Original languageEnglish
Article number108020
Number of pages17
JournalQuaternary Science Reviews
Volume305
Early online date11 Mar 2023
DOIs
Publication statusPublished - 1 Apr 2023

Bibliographical note

Acknowledgements
This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group. PAGES has been supported by the US National Science Foundation, Swiss National Science Foundation, Swiss Academy of Sciences and Chinese Academy of Sciences. We acknowledge the following financial support: UK Natural Environment Research Council Training
Grants NE/L002574/1 (T.G.S.) and NE/S007458/1 (R.E.F.); Dutch Foundation for the Conservation of Irish Bogs, Quaternary Research Association and Leverhulme Trust RPG-2021-354 (G.T.S); the Academy of Finland (M.V); PAI/SIA 80002 and FONDECYT Iniciación 11220705 - ANID, Chile (C.A.M.); R20F0002 (PATSER) ANID Chile (R.D.M.); Swedish Strategic Research Area (SRA) MERGE (ModElling the Regional and Global Earth system) (M.J.G.); Polish National Science Centre Grant
number NCN 2018/29/B/ST10/00120 (K.A.); Russian Science Foundation Grant No. 19-14-00102 (Y.A.M.); University of Latvia Grant No. AAp2016/B041/Zd2016/AZ03 and the Estonian Science Council grant PRG323 (TrackLag) (N.S. and A.M.); U.S. Geological Survey Land Change Science/Climate Research & Development Program (M.J., L.A., and D.W.); German Research Foundation (DFG), grant MA 8083/2-1 (P.M.) and grant BL 563/19-1 (K.H.K.); German Academic Exchange Service (DAAD), grant no. 57044554, Faculty of Geosciences, University of Münster, and Bavarian University Centre for Latin
America (BAYLAT) (K.H.K). Records from the Global Charcoal Database supplemented this work and therefore we would like to thank the contributors and managers of this open-source resource. We also thank Annica Greisman, Jennifer Shiller, Fredrik Olsson and Simon van Bellen for contributing charcoal data to our analyses. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Data Availability Statement

The data used for this research are available in the supplementary materials.

Keywords

  • Fire
  • Charcoal
  • Palaeofire
  • palaeoenvironments
  • Data analysis
  • North American
  • Europe
  • Patagonia
  • Carbon Balance
  • Drought

Fingerprint

Dive into the research topics of 'Regional variability in peatland burning at mid- to high-latitudes during the Holocene'. Together they form a unique fingerprint.

Cite this