Rings containing a field of characteristic zero

Research output: Contribution to journalArticle

4 Downloads (Pure)

Abstract

Let K be a field of characteristic zero, and let R be a ring containing K. Then either R×=K× or K× is a subgroup of infinite index in R×.
Original languageEnglish
Pages (from-to)413-414
Number of pages2
JournalArchiv der Mathematik
Volume109
Issue number5
Early online date16 Sep 2017
DOIs
Publication statusPublished - Nov 2017

Fingerprint

Subgroup
Ring
Zero

Cite this

Rings containing a field of characteristic zero. / Benson, David John.

In: Archiv der Mathematik, Vol. 109, No. 5, 11.2017, p. 413-414.

Research output: Contribution to journalArticle

@article{1ac575ec521e4d3cb36e3841dd10b422,
title = "Rings containing a field of characteristic zero",
abstract = "Let K be a field of characteristic zero, and let R be a ring containing K. Then either R×=K× or K× is a subgroup of infinite index in R×.",
author = "Benson, {David John}",
note = "Open access via the Springer Compact Agreement",
year = "2017",
month = "11",
doi = "10.1007/s00013-017-1100-x",
language = "English",
volume = "109",
pages = "413--414",
journal = "Archiv der Mathematik",
issn = "0003-889X",
publisher = "Springer",
number = "5",

}

TY - JOUR

T1 - Rings containing a field of characteristic zero

AU - Benson, David John

N1 - Open access via the Springer Compact Agreement

PY - 2017/11

Y1 - 2017/11

N2 - Let K be a field of characteristic zero, and let R be a ring containing K. Then either R×=K× or K× is a subgroup of infinite index in R×.

AB - Let K be a field of characteristic zero, and let R be a ring containing K. Then either R×=K× or K× is a subgroup of infinite index in R×.

U2 - 10.1007/s00013-017-1100-x

DO - 10.1007/s00013-017-1100-x

M3 - Article

VL - 109

SP - 413

EP - 414

JO - Archiv der Mathematik

JF - Archiv der Mathematik

SN - 0003-889X

IS - 5

ER -