Risks for public health related to the presence of furan and methylfurans in food

Helle Katrine Knutsen, Jan Alexander, Lars Barregård, Margherita Bignami, Beat Brüschweiler, Sandra Ceccatelli, Bruce Cottrill, Michael Dinovi, Lutz Edler, Bettina Grasl-Kraupp, Christer Hogstrand, Laurentius (Ron) Hoogenboom, Carlo Stefano Nebbia, Isabelle P. Oswald, Annette Petersen, Martin Rose, Alain-Claude Roudot, Tanja Schwerdtle, Christiane Vleminckx, Günter VollmerKevin Chipman, Bruno De Meulenaer, Michael Dinovi, Wim Mennes, Josef Schlatter, Dieter Schrenk, Katleen Baert, Bruno Dujardin, Heather Wallace, EFSA Panel on Contaminants in the Food Chain (CONTAM)

Research output: Contribution to journalArticlepeer-review

104 Citations (Scopus)
9 Downloads (Pure)

Abstract

The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2‐methylfuran, 3‐methylfuran and 2,5‐dimethylfuran) in food. They are formed in foods during thermal processing and can co‐occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready‐to‐eat meals. Grains and grain‐based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half‐life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis‐but‐2‐ene‐1,4‐dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Original languageEnglish
Article numbere05005
Number of pages142
JournalEFSA Journal
Volume15
Issue number10
Early online date25 Oct 2017
DOIs
Publication statusPublished - Oct 2017

Bibliographical note

EFSA wishes to thank the hearing experts: Diana Doell and Ruud Woutersen and EFSA staff member: José Cortinas Abrahantes for the support provided to this scientific output. The CONTAM Panel acknowledges all European competent institutions and other stakeholders that provided occurrence data on furan and methylfurans in food, and supported the data collection for the Comprehensive European Food Consumption Database.
Adopted: 20 September 2017

Keywords

  • furan
  • 2-methylfuran
  • 3-methylfuran
  • 2,5‐dimethylfuran
  • food
  • risk assessment
  • BMD

Fingerprint

Dive into the research topics of 'Risks for public health related to the presence of furan and methylfurans in food'. Together they form a unique fingerprint.

Cite this